Novel effects of minocycline on Ca(2+)-dependent Cl(-) secretion in human airway epithelial Calu-3 cells.

Toxicol Appl Pharmacol

Second Division, Second Department of Internal Medicine, School of Medicine, Nagoya University, Tsurumai-cho, Nagoya, 466-8550, Japan.

Published: October 2001

AI Article Synopsis

  • The study investigates the effects of the antibiotic minocycline on chloride (Cl(-)) transport in Calu-3 cells, which mimic human airway cells.
  • DIDS increased Cl(-) secretion, and the effects were partly attributed to Ca(2+)-activated potassium (K(Ca)) channels, where minocycline exhibited a significant inhibitory impact on this secretion pathway.
  • The findings suggest that minocycline affects Cl(-) secretion by blocking Ca(2+) influx across the cell's basolateral membrane, which influences K(Ca) channel activity.

Article Abstract

The present study concerns previously unreported effects of the antibiotic minocycline on the transepithelial Cl(-) transport in Calu-3 cells, which display electrophysiological properties consistent with human airway serous cells. Basolateral 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, 200 microM) augmented Cl(-) secretion, which was detected as a 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB, 100 microM, a Cl(-) channel blocker)-sensitive short-circuit current (I(sc)). The DIDS-induced I(sc) was composed of Ca(2+)-activated K(+) (K(Ca)) channel-dependent and -independent components. The former was selectively inhibited by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)ester (BAPTA/AM, 10 microM), charybdotoxin (ChTx, 100 nM), clotrimazole (10 microM), basolateral Ca(2+) removal, and basolateral minocycline (IC(50) = 20 microM). The latter was attenuated by basolateral BaCl (5 mM). In contrast, forskolin (10 microM)-induced I(sc), which is insensitive to BAPTA/AM and ChTx, was unaffected by minocycline (100 microM). ATP-induced I(sc) was partially inhibited by basolateral but not by apical minocycline. I(sc) due to basolateral application of ionomycin (1 microM) was markedly suppressed by NPPB and basolateral Ca(2+) removal. These inhibitory effects were mimicked by minocycline applied only from the basolateral side of the monolayer. In the basolateral absence of Ca(2+), 1-ethyl-2-benzimdazolinone (500 microM), a K(Ca) channel opener, generated a sustained I(sc) sensitive to ChTx. Minocycline had no significant effect on the ChTx-sensitive component of the I(sc). It is concluded that minocycline inhibits K(Ca) channel-dependent Cl(-) secretion via a blockade of Ca(2+) influx across the basolateral membrane from the extracellular side.

Download full-text PDF

Source
http://dx.doi.org/10.1006/taap.2001.9261DOI Listing

Publication Analysis

Top Keywords

cl- secretion
12
basolateral
10
minocycline
8
human airway
8
calu-3 cells
8
microm
8
100 microm
8
kca channel-dependent
8
basolateral ca2+
8
ca2+ removal
8

Similar Publications

() is a Gram-negative, obligate anaerobic, commensal bacterium residing in the human gut and holds therapeutic potential for ulcerative colitis (UC). Previous studies have indicated that capsular polysaccharide A (PSA) of is a crucial component for its effectiveness, possessing various biological activities such as anti-inflammatory, anti-tumor, and immune-modulating effects. We previously isolated and characterized the strain ZY-312 from the feces of a healthy breastfed infant, and extracted its PSA, named TP2.

View Article and Find Full Text PDF

Circulating mature red blood cells (RBCs) from patients and mice with sickle cell disease (SCD) abnormally retain mitochondria, a factor shown to contribute to the disease's pathobiology. To further understand the functional implications of RBC mitochondria retention in SCD, we used mitochondria inhibitors and metabolites/substrates from the tricarboxylic acid cycle, oxidative phosphorylation and glycolysis pathways (ADP, glutamate, malate, pyruvate, succinate or all metabolites combined) and examined RBC bioenergetics, reactive oxygen species (ROS) levels, calcium flux and hydration. In RBCs from sickle mice, mitochondria inhibition reduced ATP levels by 30%-60%, whereas control RBCs were unaffected.

View Article and Find Full Text PDF

Microsensor systems for cell metabolism - from 2D culture to organ-on-chip (2019-2024).

Lab Chip

January 2025

Laboratory for Electrical Instrumentation and Embedded Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.

Cell cultures, organs-on-chip and microphysiological systems become increasingly relevant as models, , in drug development, disease modelling, toxicology or cancer research. It has been underlined repeatedly that culture conditions and metabolic cues have a strong or even essential influence on the reproducibility and validity of such experiments but are often not appropriately measured or controlled. Here we review microsensor systems for cell metabolism for the continuous measurement of culture conditions in microfluidic and lab-on-chip platforms.

View Article and Find Full Text PDF

Osteoporosis has been usually considered a female disease, generally causing more fracture risk and complications in adult and older women compared to older men. While vertebral fractures occur in a small proportion of men during middle age, men generally fracture about 10 years later than women, with significant increases in fracture risk after about age 75. Independent of age, men experiencing fragility fractures have a higher risk of life-threatening events compared to women, but the risk of secondary fragility fracture overlaps between men and women.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is a primary endocrine disorder affecting premenopausal women involving metabolic dysregulation. We aimed to screen serum biomarkers in PCOS patients using untargeted lipidomics and ensemble machine learning. Serum from PCOS patients and non-PCOS subjects were collected for untargeted lipidomics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!