Wavelets of excitability in sensory neurons.

J Neurophysiol

Center for BioDynamics and Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA.

Published: October 2001

We have investigated variations in the excitability of mammalian cutaneous mechanoreceptor neurons. We focused on the phase dynamics of an action potential relative to a periodic stimulus, showing that the excitability of these sensory neurons has interesting nonstationary oscillations. Using a wavelet analysis, these oscillations were characterized through the depiction of their period as a function of time. It was determined that the induced oscillations are weakly dependent on the stimulus frequency, and that lower temperatures significantly reduce the frequency of the phase response. Our results reveal novel excitability properties in sensory neurons, and, more generally, could prove significant in the deduction of mechanistic attributes underlying the nonstationary excitability in neuronal systems. Since peripheral neurons feed information to the CNS, variable responses observed in higher regions may be generated in part at the site of sensory detection.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.2001.86.4.2097DOI Listing

Publication Analysis

Top Keywords

sensory neurons
12
excitability sensory
8
neurons
5
wavelets excitability
4
sensory
4
neurons investigated
4
investigated variations
4
excitability
4
variations excitability
4
excitability mammalian
4

Similar Publications

Kappa opioid receptors (KOR) expressed by peripheral pain-sensing neurons (nociceptors) are a promising target for development of effective and safer analgesics for inflammatory pain that are devoid of central nervous system adverse effects. Here we sought to delineate the signaling pathways that underlie peripheral KOR-mediated antinociception in adult male and female Sprague-Dawley rats. In an inflammatory model of pain, local intraplantar (i.

View Article and Find Full Text PDF

The inferior colliculus (IC) has traditionally been regarded as an important relay in the auditory pathway, primarily involved in relaying auditory information from the brainstem to the thalamus. However, this study uncovers the multifaceted role of the IC in bridging auditory processing, sensory prediction, and reward prediction. Through extracellular recordings in monkeys engaged in a sound duration-based deviation detection task, we observed a 'climbing effect' in neuronal firing rates, indicative of an enhanced response over sound sequences linked to sensory prediction rather than reward anticipation.

View Article and Find Full Text PDF

The mushroom body (MB) is the center for associative learning in insects. In , intersectional split-GAL4 drivers and electron microscopy (EM) connectomes have laid the foundation for precise interrogation of the MB neural circuits. However, investigation of many cell types upstream and downstream of the MB has been hindered due to lack of specific driver lines.

View Article and Find Full Text PDF

Hyperalgesic priming is a model system that has been widely used to understand plasticity in painful stimulus-detecting sensory neurons, called nociceptors. A key feature of this model system is that following priming, stimuli that do not normally cause hyperalgesia now readily provoke this state. We hypothesized that hyperalgesic priming occurs because of reorganization of translation of mRNA in nociceptors.

View Article and Find Full Text PDF

SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!