Synergistic activities of gatifloxacin in combination with other antimicrobial agents against Pseudomonas aeruginosa and related species.

Antimicrob Agents Chemother

Department of Microbiology, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, USA.

Published: November 2001

AI Article Synopsis

  • Drug combinations have been researched to combat infections from bacteria like Pseudomonas and Acinetobacter.
  • Time-kill analysis was used to assess how gatifloxacin (GAT) worked together with nonquinolone drugs at realistic dosage levels.
  • Significant synergy in killing bacteria (more than a 2 log(10) reduction after 24 hours) was found when GAT was paired with either amikacin or beta-lactams in 50 to 75% of strains tested, including those resistant to one or both drugs.

Article Abstract

Drug combinations have been used to treat serious infections caused by Pseudomonas, Burkholderia, Stenotrophomonas, and Acinetobacter. In this study, the combined drug effects of gatifloxacin (GAT) and nonquinolones were determined by time-kill analysis at clinically achievable drug concentrations. Synergy (>or=2 log(10)-enhanced killing at 24 h) was observed with GAT plus amikacin or a beta-lactam against 50 to 75% of strains, including strains nonsusceptible to one or both drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC90810PMC
http://dx.doi.org/10.1128/AAC.45.11.3220-3222.2001DOI Listing

Publication Analysis

Top Keywords

synergistic activities
4
activities gatifloxacin
4
gatifloxacin combination
4
combination antimicrobial
4
antimicrobial agents
4
agents pseudomonas
4
pseudomonas aeruginosa
4
aeruginosa species
4
species drug
4
drug combinations
4

Similar Publications

Metastasis continues to pose a significant challenge in tumor treatment. Evidence indicates that choline dehydrogenase (CHDH) is crucial in tumorigenesis. However, the functional role of CHDH in colorectal cancer (CRC) metastasis remains unreported.

View Article and Find Full Text PDF

Overcoming (X)-harboring tigecycline resistance: a study on the efficacy of tigecycline-apramycin combinations.

Front Microbiol

December 2024

Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

Introduction: The emergence of the wide variety of novel tigecycline resistance (X) variants, including (X3), (X4), (X5), and (X6), has raised a serious threat to global public health and posed a significant challenge to the clinical treatment of multidrug-resistant bacterial infections.

Methods: In this study, we evaluated the synergism of tigecycline combining with other antibiotics as a means of overcoming the (X)-mediated resistance in spp. Antibiotic synergistic efficacy was evaluated through chequerboard experiments, time-kill assays and dose-response curves.

View Article and Find Full Text PDF

The growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514).

View Article and Find Full Text PDF

Pyrazinamide (PZA) is a critical component of tuberculosis first-line therapy due to its ability to kill both growing and non-replicating drug-tolerant populations of within the host. Recent evidence indicates that PZA acts through disruption of coenzyme A synthesis under conditions that promote cellular stress. In contrast to its bactericidal action , PZA shows weak bacteriostatic activity against in axenic culture.

View Article and Find Full Text PDF

This study focuses on enhancing the water oxidation reaction (WOR) efficacy of dinuclear cobalt complex catalysts from both kinetic (turnover frequency, TOF) and thermodynamic (overpotential, η) perspectives. For this purpose, we synthesized six dinuclear cobalt complexes 1-6 comprising non-innocent ligands with different electronically active substituents (-OMe (1), -Me (2), -H (3), -F (4), -Cl (5), and -CN (6)). The electronic effects on the electrochemical WOR under neutral, acidic, and alkaline conditions were investigated experimentally and computationally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!