Presenilins (PSs) are mutated in a majority of familial Alzheimer disease (FAD) cases. Mutated PSs may cause FAD by a number of pro-apoptotic mechanisms, or by regulating gamma-secretase activity, a protease involved in beta-amyloid precursor protein processing to the neurotoxic beta-amyloid peptide. Besides their normal endoproteolytic processing, PSs are substrates for caspases, being cleaved to alternative N-terminal and C-terminal fragments. So far little is known about the role of PSs cleavage in the apoptotic machinery. Here, we used SH-SY5Y neuroblastoma cells stably transfected with wild-type or exon 9 deleted presenilin 1 (PS1) in a time-course study after the exposure to the calcium ionophore A23187. During and after exposure to A 23187, intracellular calcium levels were higher in exon 9 deleted PS1 cells as compared with non-transfected and wild-type PS1 transfected cells. Cell death and the enrichment of apoptotic cells after A23187 exposure were increased by overexpression of exon 9 deleted PS1 as compared with the control cell lines. Wild-type PS1 cells were compared with exon 9 deleted PS1 cells and the temporal relationship between PS1 and other caspase substrates cleavages was analyzed. Exon 9 deleted PS1 cells exhibited a higher caspase-3 activation and a greater cleavage of PS1 and poly(ADP-ribose) polymerase (PARP) compared with wild-type PS1 cells. Exon 9 deleted PS1 cleavage occurred earlier than other caspase substrate cleavages (i.e., PARP and gelsolin), simultaneous with minimum detectable caspase-3 activation. Therefore, alternative cleavage of PS1 may play an important role for the regulation of the proteolytic cascade activated during apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.1204DOI Listing

Publication Analysis

Top Keywords

exon deleted
28
deleted ps1
20
ps1 cells
20
ps1
12
wild-type ps1
12
cells
9
calcium ionophore
8
sh-sy5y neuroblastoma
8
neuroblastoma cells
8
a23187 exposure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!