Mitochondrial disorders are human genetic diseases with extremely variable clinical and genetic features. To better define them, we made a genotype-phenotype correlation in a series of 207 affected patients, and we examined most of them with six laboratory examinations (serum CK and basal lactate levels, EMG, cardiac and EEG studies, neuroradiology). We found that, depending on the genetic abnormality, hyperckemia occurs most often with either chronic progressive external ophthalmoplegia (CPEO) and ptosis or with limb weakness. Myopathic EMGs are more common than limb weakness, except in patients with A8344G mutations. Peripheral neuropathy, when present, is always axonal. About 80% of patients with A3243G and A8344G mutations have high basal lactate levels, whereas pure CPEO is never associated with increased lactate levels. Cardiac abnormalities mostly consist of conduction defects. Abnormalities on CT or MRI of the brain are relatively common in A3243G mutations independently of the clinical phenotype. Patients with multiple mtDNA deletions are somehow "protected" against the development of abnormalities with any of the tests. We conclude that, despite the phenotypic heterogeneity of mitochondrial disorders, correlation of clinical features and laboratory findings may give the clinician important clues to the genetic defect, allowing earlier diagnosis and counselling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004150170094 | DOI Listing |
Biol Psychiatry Glob Open Sci
March 2025
Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island.
Background: Mounting evidence suggests that mitochondria respond to psychosocial stress. Recent studies suggest mitochondrial DNA (mtDNA) deletions may be increased in some psychiatric disorders, but no studies have examined early-life stress (ELS) and mtDNA deletions. In this study, we assessed mtDNA deletions in peripheral blood mononuclear cells of medically healthy young adults with and without ELS.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Clinic of Polish Gastroenterology Foundation, Warsaw, Poland.
Background: Primary biliary cholangitis (PBC) is a cholestatic, autoimmune liver disease with the presence of characteristic autoantibodies. The aim of the work was to determine the level of antibodies directed against bacterial antigens: (anti-anti), (anti-), (anti- ) and () in sera of PBC patients. We also performed studies on the impact of the bacterial peptides on the specific antigen-antibody binding.
View Article and Find Full Text PDFMol Neurodegener
January 2025
Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA.
Background: Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Neurology, Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
Abnormality in transactivating response region DNA binding protein 43 (TDP43) is well-recognized as the pathological hallmark of neurodegenerative diseases. However, the role of TDP43 in neuromyelitis optica spectrum disorder (NMOSD) remains unknown. Here, our observations demonstrate an upregulation of TDP43 in both in vitro and in vivo models of NMOSD, as well as in biological samples from NMOSD patients.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
Human mitochondrial DNA (mtDNA) harbors essential mutations linked to aging, neurodegenerative diseases, and complex muscle disorders. Due to its uniparental and haploid inheritance, mtDNA captures matrilineal evolutionary trajectories, playing a crucial role in population and medical genetics. However, critical questions about the genomic diversity patterns, inheritance models, and evolutionary and medical functions of mtDNA remain unresolved or underexplored, particularly in the transition from traditional genotyping to large-scale genomic analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!