Bioassay of cadmium using a DNA microarray: genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium.

Environ Toxicol Chem

Human Stress Signal Research Center and Research Institute of Biological Resources, The National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.

Published: October 2001

DNA microarray technology enables genome-wide detection of cell response at the transcriptional level. We are planning to make bioassay systems that can detect environmental chemicals to screen for potential bioreactive agents. To develop a DNA microarray for our purposes, the changes in gene expression underlying the yeast stress response to cadmium were analyzed by a microarray of total mRNA. Cadmium is a potent cell poison known to cause oxidative stress by changing intracellular glutathione levels. We report here that not only the glutathione synthesis gene (GSH1) but also almost all transcripts of the enzymes involved in the sulfur amino acid metabolism, especially MET14 and MET17, were greatly induced after exposure to cadmium. While several common stress-responsive genes, such as HSP26, GRE1, HSP12, and DDR48, were up-regulated more than almost fourfold by cadmium, there were also 42 other genes up-regulated more than fourfold. Based on these results, we concluded that DNA microarrays are very useful instruments for creating new bioassay systems and finding genetic promoters of stress indicators.

Download full-text PDF

Source
http://dx.doi.org/10.1897/1551-5028(2001)020<2353:bocuad>2.0.co;2DOI Listing

Publication Analysis

Top Keywords

dna microarray
12
cadmium dna
8
response cadmium
8
bioassay systems
8
up-regulated fourfold
8
cadmium
5
bioassay cadmium
4
dna
4
microarray
4
microarray genome-wide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!