Early-onset lysosomal glycogen storage disease with normal acid maltase.

J Inherit Metab Dis

Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.

Published: August 2001

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1010585714729DOI Listing

Publication Analysis

Top Keywords

early-onset lysosomal
4
lysosomal glycogen
4
glycogen storage
4
storage disease
4
disease normal
4
normal acid
4
acid maltase
4
early-onset
1
glycogen
1
storage
1

Similar Publications

Objectives: Sialidosis type 1 is a rare autosomal recessive lysosomal storage disorder caused by pathogenic variants in the gene, which encodes the sialic acid-degrading enzyme α-neuraminidase. Sialidosis type 1 is a milder form with a late-onset phenotype, characterized by progressive myoclonic epilepsy and ataxia with cherry-red spots. Sialidosis type 2 is an early-onset and more severe form presenting with dysmorphic features, hepatosplenomegaly and cognitive delay.

View Article and Find Full Text PDF

Recombinant antibodies are a promising class of therapeutics to treat protein misfolding associated with neurodegenerative diseases, and several antibodies that inhibit aggregation are approved or in clinical trials to treat Alzheimer's disease. Here, we developed antibodies targeting the aggregation-prone β-propeller olfactomedin (OLF) domain of myocilin, variants of which comprise the strongest genetic link to glaucoma and cause early onset vision loss for several million individuals worldwide. Mutant myocilin aggregates intracellularly in the endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Early trigeminal and sensory impairment and lysosomal dysfunction in accurate models of Wolfram syndrome.

Exp Neurol

December 2024

Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia. Electronic address:

Wolfram syndrome (WS) is a rare condition caused by homozygous or compound heterozygous mutations in the WFS1 gene primarily. It is diagnosed on the basis of early-onset diabetes mellitus and optic nerve atrophy. Patients complain of trigeminal-like migraines and show deficits in vibration sensation, but the underlying cause is unknown.

View Article and Find Full Text PDF

A natural history study of pediatric patients with early onset of GM1 gangliosidosis, GM2 gangliosidoses, or gaucher disease type 2 (RETRIEVE).

Orphanet J Rare Dis

December 2024

Division of Metabolism and Children's Research Center, Reference Center for Inborn Errors of Metabolism, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland.

Article Synopsis
  • RETRIEVE is a natural history study focused on the survival and disease progression of early-onset GM1, GM2, and type 2 Gaucher disease (GD2).
  • The study gathered data from 185 patients retrospectively and 40 patients prospectively, revealing varying median survival rates: GM1 (19 months), GM2 (44 months), and GD2 (14 months).
  • The findings noted that hypotonia was widespread among GM1 patients (94.4%), with additional symptoms like strabismus and splenomegaly specifically observed in GD2 patients, confirming known patterns of these rare lysosomal storage disorders.
View Article and Find Full Text PDF

Lysosomal dysfunction is causally linked to neurodegeneration in many lysosomal storage disorders (LSDs) and is associated with various age-related neurodegenerative diseases , but there is limited understanding of the mechanisms by which altered lysosomal function leads to changes in gene expression that drive pathogenic cellular phenotypes. To investigate this question, we performed systematic imaging, transcriptomic, and epigenetic studies of major brain cell types in null (KO) mice, a preclinical mouse model for Sanfilippo syndrome (Mucopolysaccharidosis Type IIIA, MPS-IIIA) . MPS-IIIA is a neurodegenerative LSD caused by homozygous loss-of-function (LoF) mutations in which results in severe early-onset developmental, behavioral, and neurocognitive impairment .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!