This paper reports clinical and metabolic studies of two Italian siblings with a novel form of persistent isolated hypermethioninaemia, i.e. abnormally elevated plasma methionine that lasted beyond the first months of life and is not due to cystathionine beta-synthase deficiency, tyrosinaemia I or liver disease. Abnormal elevations of their plasma S-adenosylmethionine (AdoMet) concentrations proved they do not have deficient activity of methionine adenosyltransferase I/III. A variety of studies provided evidence that the elevations of methionine and AdoMet are not caused by defects in the methionine transamination pathway, deficient activity of methionine adenosyltransferase II, a mutation in methylenetetrahydrofolate reductase rendering this activity resistant to inhibition by AdoMet, or deficient activity of guanidinoacetate methyltransferase. Plasma sarcosine (N-methylglycine) is elevated, together with elevated plasma AdoMet in normal subjects following oral methionine loads and in association with increased plasma levels of both methionine and AdoMet in cystathionine beta-synthase-deficient individuals. However, plasma sarcosine is not elevated in these siblings. The latter result provides evidence they are deficient in activity of glycine N-methyltransferase (GNMT). The only clinical abnormalities in these siblings are mild hepatomegaly and chronic elevation of serum transaminases not attributable to conventional causes of liver disease. A possible causative connection between GNMT deficiency and these hepatitis-like manifestations is discussed. Further studies are required to evaluate whether dietary methionine restriction will be useful in this situation.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1010577512912DOI Listing

Publication Analysis

Top Keywords

deficient activity
16
glycine n-methyltransferase
8
persistent isolated
8
isolated hypermethioninaemia
8
elevated plasma
8
methionine
8
liver disease
8
activity methionine
8
methionine adenosyltransferase
8
methionine adomet
8

Similar Publications

Plague, caused by , poses a public health threat not only due to sporadic outbreaks across the globe but also due to its potential as a biothreat agent. Ironically, among the seven deadliest pandemics in global history, three were caused by . Pneumonic plague, the more contagious and severe form of the disease, is difficult to contain, requiring either prophylactic antibiotic treatment or vaccination.

View Article and Find Full Text PDF

Iron Deficiency in Tomatoes Reversed by Strains: A Synergistic Role of Siderophores and Plant Gene Activation.

Plants (Basel)

December 2024

Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain.

An alkaline pH in soils reduces Fe availability, limiting Fe uptake, compromising plant growth, and showing chlorosis due to a decrease in chlorophyll content. To achieve proper Fe homeostasis, dicotyledonous plants activate a battery of strategies involving not only Fe absorption mechanisms, but also releasing phyto-siderophores and recruiting siderophore-producing bacterial strains. A screening for siderophore-producing bacterial isolates from the rhizosphere of was carried out, resulting in two strains, Z8.

View Article and Find Full Text PDF

Hydropriming rice seeds effectively improve the germination percentage, shortens the germination period, and promotes seedling growth. The impact of seed hydropriming is to speed up growth under dry soil conditions, thereby avoiding drought damage. This study analyzes the effect of hydropriming on morpho-physiological changes in the water uptake of rice seeds using "Kasalath" and "Nipponbare" under water-deficit conditions.

View Article and Find Full Text PDF

Selenium (Se) is an essential element for humans. However, much of the world's human population is deficient in this element, which has become a public health problem. This study aimed to evaluate whether applying severe water stress to wheat plants ( L.

View Article and Find Full Text PDF

Active Vitamin D Ameliorates Arsenite-Induced Thyroid Dysfunction in Sprague-Dawley Rats by Inhibiting the Toll-like Receptor 4/NF-KappaB-Mediated Inflammatory Response.

Toxics

December 2024

Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China.

Arsenic, a well-known environmental endocrine disruptor, exerts interference on the body's endocrine system. Our previous investigations have demonstrated that chronic exposure to sodium arsenite (NaAsO) can induce thyroid damage and dysfunction in Sprague-Dawley (SD) rats. Vitamin D (VD) is an indispensable fat-soluble vitamin that plays a crucial role in maintaining thyroid health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!