Escherichia coli cytotoxic necrotizing factors and Bordetella dermonecrotic toxin: the dermonecrosis-inducing toxins activating Rho small GTPases.

Toxicon

Project Research for Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Yamada-oka 3-1, Suita, 565-0871, Osaka, Japan.

Published: November 2001

AI Article Synopsis

  • Escherichia coli cytotoxic necrotizing factors (CNFs) and Bordetella dermonecrotic toxin (DNT) are part of a new family of toxins that cause dermonecrosis by activating Rho family GTPases.
  • Both CNFs (CNF1 and CNF2) and DNT have similar structural features, including an N-terminal domain for cell binding and a C-terminal catalytic domain that shares about 30% identical residues.
  • The toxins deactivate GTPases like Rho, Rac, and Cdc42 through deamidation and polyamination, leading to their continuous activation and resulting in their toxic effects.

Article Abstract

Escherichia coli cytotoxic necrotizing factors (CNFs) and Bordetella dermonecrotic toxin (DNT) have been recently found to comprise a novel family of dermonecrosis-inducing toxins which activate the small GTPases of the Rho family. They are single chain polypeptides consisting of an N-terminal domain responsible for binding to target cells and a C-terminal catalytic domain. CNFs (CNF1 and 2) and DNT share in the catalytic domain about 30% identical residues and a consensus sequence where the catalytically active center Cys resides. Both toxins deamidate Rho and other members of the Rho family, Rac and Cdc42, at Gln in the switch II region, which plays an important role in their GTPase activity. DNT, in addition, catalyzes a cross-link of the Gln of the GTPases with ubiquitous polyamines such as putrescine, spermidine, and spermine. The deamidation and the polyamination result in abrogation of the GTPase activity, and in addition, the polyamination endows Rho with the ability to interact with a downstream effector, ROCK, in a GTP-independent manner. These effects render the GTPases constitutively active, which underlies the toxicities of CNFs and DNT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0041-0101(01)00149-0DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
coli cytotoxic
8
cytotoxic necrotizing
8
necrotizing factors
8
bordetella dermonecrotic
8
dermonecrotic toxin
8
dermonecrosis-inducing toxins
8
small gtpases
8
rho family
8
catalytic domain
8

Similar Publications

Canine urothelial cell model to study intracellular bacterial community development by uropathogenic Escherichia coli.

PLoS One

January 2025

Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America.

Urinary tract infections (UTIs) are among the most common bacterial infections of both dogs and humans, with most caused by uropathogenic Escherichia coli (UPEC). Recurrent UPEC infections are a major concern in the treatment and management of UTIs in both species. In humans, the ability of UPECs to form intracellular bacterial communities (IBCs) within urothelial cells has been implicated in recurrent UTIs.

View Article and Find Full Text PDF

Genome-Wide A → G and C → T Mutations Induced by Functional TadA Variants in .

ACS Synth Biol

January 2025

Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.

The fusion expression of deoxyribonucleic acid (DNA) replication-related proteins with nucleotide deaminase enzymes promotes random mutations in bacterial genomes, thereby increasing genetic diversity among the population. Most previous studies have focused on cytosine deaminase, which produces only C → T mutations, significantly limiting the variety of mutation types. In this study, we developed a fusion expression system by combining DnaG (RNA primase) with adenine deaminase TadA-8e (DnaG-TadA) in , which is capable of rapidly introducing A → G mutations into the genome, resulting in a 664-fold increase in terms of mutation rate.

View Article and Find Full Text PDF

Multiplicity of type 6 secretion system toxins limits the evolution of resistance.

Proc Natl Acad Sci U S A

January 2025

Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom.

The bacterial type 6 secretion system (T6SS) is a toxin-injecting nanoweapon that mediates competition in plant- and animal-associated microbial communities. Bacteria can evolve de novo resistance against T6SS attacks, but resistance is far from universal in natural communities, suggesting key features of T6SS weaponry may act to limit its evolution. Here, we combine ecoevolutionary modeling and experimental evolution to examine how toxin type and multiplicity in attackers shape resistance evolution in susceptible competitors.

View Article and Find Full Text PDF

Vibrio parahaemolyticus propels itself through liquids using a polar flagellum and efficiently swarms across surfaces or viscous environments with the aid of lateral flagella. H-NS plays a negative role in the swarming motility of V. parahaemolyticus by directly repressing the transcription of the lateral flagellin gene lafA.

View Article and Find Full Text PDF

Effective Gene Expression Prediction and Optimization from Protein Sequences.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.

High soluble protein expression in heterologous hosts is crucial for various research and applications. Despite considerable research on the impact of codon usage on expression levels, the relationship between protein sequence and expression is often overlooked. In this study, a novel connection between protein expression and sequence is uncovered, leading to the development of SRAB (Strength of Relative Amino Acid Bias) based on AEI (Amino Acid Expression Index).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!