Cortical myoclonus in Janz syndrome.

Clin Neurophysiol

Department of Neurophysiology, C. Besta Neurological Institute, via Celoria 11, 20133, Milan, Italy.

Published: October 2001

Objective: To evaluate the characteristics of EEG paroxysms and the relationship between EEG spikes and ictal myoclonic jerks in patients with juvenile myoclonic epilepsy (JME).

Methods: Six patients with a typical form of JME entered the study and underwent computerized polygraphic recordings. In each patient, the inter-peak spike interval was measured on repeated EEG bursts, and jerk-locked back averaging was performed on ictal epochs using a time window including the 100 ms before and the 100-200 ms after the point at which the jerk-related EMG potential diverged from baseline.

Results: In all cases, the myoclonic jerks were associated with polyspike waves (PSW) complexes. The frequency of repeated spikes within the PSW complex ranged from 16 to 27 Hz. Jerk-locked averaging revealed a positive-negative EEG transient with maximal amplitude on the frontal leads, which preceded the myoclonic jerk by 10.25+/-0.96 ms. A delay of 9.50+/-1.73 ms was measured between the jerk-locked positive peak detected on the frontal EEG leads of the two hemispheres; a comparable time lag was observed between the onset of myoclonic jerks in the two deltoid muscles.

Conclusions: Our data suggest that the ultimate mechanism responsible for ictal myoclonic jerks in JME is largely similar to that sustaining cortical myoclonus in more severe pathological conditions such as progressive myoclonus epilepsies, despite the different pathogenic substrate and triggering mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1388-2457(01)00634-4DOI Listing

Publication Analysis

Top Keywords

myoclonic jerks
16
cortical myoclonus
8
ictal myoclonic
8
jerk-locked averaging
8
myoclonic
6
eeg
5
myoclonus janz
4
janz syndrome
4
syndrome objective
4
objective evaluate
4

Similar Publications

The gene (OMIM: 608271) encodes the Microtubule-Actin Cross-Linking Factor 1 protein. Existing medical research shows that genetic mutations in the gene have been associated with neurodevelopmental and neurodegenerative disorders, with variants of unknown significance also linked to autism spectrum disorder (ASD). However, the number of reported autism disorder or epilepsy cases associated with mutations remains limited.

View Article and Find Full Text PDF

Segmental Brainstem Myoclonus (SBM) is a rare movement disorder characterized by rhythmic contractions of muscles innervated by brainstem segments. We report a 20-year-old patient with ADCK3-related spinocerebellar ataxia type 9 (SCAR9) presenting with sudden-onset myoclonic movements of the throat, tongue, and soft palate. Brain MRI showed stable findings, including dentate nucleus hyperintensities.

View Article and Find Full Text PDF

Ceroid lipofuscinosis type 2 (CLN2) is caused by biallelic pathogenic variants in the TPP1 gene, encoding lysosomal tripeptidyl peptidase 1 (TPP1). The classical late-infantile phenotype has an age of onset between 2 and 4 years and is characterized by psychomotor regression, myoclonus, ataxia, blindness, and shortened life expectancy. Vision loss occurs due to retinal degeneration, usually when severe neurological symptoms are already evident.

View Article and Find Full Text PDF

Myoclonus After Cardiac Arrest: Need for Standardization-A Systematic Review and Research Proposal on Terminology.

Crit Care Med

November 2024

Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria.

Objectives: Although myoclonus less than or equal to 72 hours after cardiac arrest (CA) is often viewed as a single entity, there is considerable heterogeneity in its clinical and electrophysiology characteristics, and its strength of association with outcome. We reviewed definitions, electroencephalogram, and outcome of myoclonus post-CA to assess the need for consensus and the potential role of electroencephalogram for further research.

Data Sources: PubMed, Embase, and Cochrane databases.

View Article and Find Full Text PDF

Opsoclonus myoclonus ataxia syndrome (OMAS) is a rare neuroinflammatory disorder that is typically associated with paraneoplastic and postinfectious processes. Opsoclonus myoclonus ataxia syndrome has not been previously reported in association with tuberculous meningitis (TBM). This report presents a unique case in which TBM manifested as OMAS, highlighting the complex interplay between tuberculosis and autoimmune neurological conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!