The somatotopic inputs into red nucleus (RN) neurons have been studied with special reference to their level of projection in the spinal cord. As inputs we employed either volleys in predominantly cutaneous nerves of forelimb and hindlimb or cutaneous mechanoreceptor discharges evoked by taps to footpads of forelimb and hindlimb. There has been physiological confirmation of the anatomical findings that RD neurons projecting to the lumbar cord are located in the ventrolateral zone of the pars magnocellularis, whereas in the dorsomedial zone are RN neurons with cervical but not lumbar projection. Somatotopically there was found to be a differentiation of input to RN neurons according as they projected to the lumbar or only to the cervical cord. This finding was presented in the form both of tables and of somatotopic maps. As expected, this discrimination was more restrictive for the more selective inputs from pad taps than for nerve inputs. Nevertheless, forelimb inputs often had a considerable excitatory and inhibitory action on lumbar-projecting RN neurons, and vice versa for cervical-projecting neurons. There were two notable somatotopic findings that suggest specificities of connectivities. First, despite the large convergence of IP neurons onto RN neurons (about 50-fold), the degree of somatotopic discrimination was about the same for interpositus and RN neurons with two testing procedures: between inputs from forelimb and hindlimb; and between inputs from pads on one foot. Second, although there was in the interpositus nucleus a considerable topographical admixture of neurons with dominant forelimb or hindlimb inputs, the axonal projections of these neurons were apparently unscrambled on the way to the target RN neurons, so as to deliver the somatotopic specificities observed for two classes of RN neurons; those projecting down the spinal cord beyond L2 level, and those projecting to C2 but not L2. Finally, there is a general discussion of motor control with reference to the pathway; pars intermedia of anterior lobe of cerebellum leads to interpositus nucleus leads to red nucleus leads to rubrospinal tract leads to spinal motoneurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.1975.38.4.965 | DOI Listing |
The transgenic SOD1G93A mouse model is the most widely used animal model of amyotrophic lateral sclerosis (ALS), a fatal disease of motor neuron degeneration. While genetic background influences onset and progression variability of motor dysfunction, the C57BL/6 background most reliably exhibits robust ALS phenotypes; thus, it is the most widely used strain in mechanistic studies. In this model, paresis begins in the hindlimbs and spreads rostrally to the forelimbs.
View Article and Find Full Text PDFPol J Vet Sci
June 2024
Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Łukasiewicza 5/7, 50-367 Wroclaw, Poland.
The aim of this study was to evaluate the efficacy of thermography in assessing the impact of regular physical effort on changes in the body surface temperature of the upper body parts of young racehorses. The study involved monitoring 33 racehorses aged 3 years in 3 imaging sessions over a period of 3 months. Temperature measurements of the neck and upper part of the forelimbs and hindlimbs from both sides were taken just before and after training.
View Article and Find Full Text PDFDev Growth Differ
December 2024
Graduate School of Medical Sciences, Tottori University Yonago, Tottori, Japan.
5'Hox genes regulate pattern formation along the axes of the limb. Previously, we showed that Hoxa13/Hoxd13 double-mutant newts lacked all digits of the forelimbs during development and regeneration, showing that newt Hox13 is necessary for digit formation in development and regeneration. In addition, we found another unique phenotype.
View Article and Find Full Text PDFJ Physiol
December 2024
School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
PLoS One
December 2024
Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
Musculoskeletal disease (MSD) is common in ageing cats, resulting in chronic pain and mobility impairment, but diagnosis can be challenging. We hypothesised that there would be differences between cats with and without MSD in paw pressure and spatiotemporal and kinetic gait metrics. A cohort of 53 cats, aged between 7 and 10 years from the North West of the United Kingdom, underwent an orthopaedic examination and walked on a pressure sensitive walkway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!