Aggregates of n-dodecyl phosphate present an attractive model system of simple phospholipid amphiphile supramolecular structures for study by molecular dynamics simulation, since these systems have previously been studied experimentally under various conditions. A detailed molecular dynamics description of the properties of planar bilayer membranes (as a model for unilamellar vesicular membranes) and spherical micelles under various simulated conditions is presented. It is shown that the united-atom model of GROMOS96 applying the force-field parameter set 43A2 for biomolecular systems yields properties in agreement with experimental ones in most cases. Hydrogen bonding plays a role in stabilizing the bilayer aggregates at low pH, but not for the micelles, which are energetically favoured at high pH. NMR -S(CD) order parameters for a lipid bilayer system, the diffusion of amphiphiles within aggregates and of counterions, and lifetimes of hydrogen bonds between amphiphiles and to water are estimated from the MD simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002490100155DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
12
dynamics simulation
8
n-dodecyl phosphate
8
simulation n-dodecyl
4
phosphate aggregate
4
aggregate structures
4
structures aggregates
4
aggregates n-dodecyl
4
phosphate attractive
4
attractive model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!