DNA double-strand breaks induce formation of RP-A/Ku foci on in vitro reconstituted Xenopus sperm nuclei.

J Cell Sci

Department of Biochemistry and Molecular Biology, University of Geneva, CH1211-Geneva 4, Switzerland.

Published: September 2001

AI Article Synopsis

  • RP-A plays a crucial role in DNA replication, repair, and recombination, forming clusters known as foci during S-phase and in response to DNA double-strand breaks.
  • Ku86 protein co-localizes with RP-A in these foci, and both proteins facilitate unscheduled DNA synthesis and enhance ligation efficiency in cases of linear double-stranded DNA.
  • The study highlights the use of a Xenopus in vitro system to generate DNA double-strand breaks, allowing researchers to investigate RP-A and Ku86 as markers for DNA damage and its repair in conditions mimicking a normal nuclear environment.

Article Abstract

Replication protein A (RP-A) is involved in DNA replication, repair and recombination. It has been demonstrated that RP-A clusters in foci prior to DNA replication and redistributes over chromatin during S-phase. Here, we show that RP-A foci also form in response to DNA double-strand (ds) breaks produced on Xenopus laevis sperm nuclei by restriction enzymes and then reconstituted with Xenopus egg high-speed extracts. Ku86 co-localizes with RP-A in the same foci. An unscheduled RP-A-dependent DNA synthesis takes place overlapping with RP-A and Ku86 foci. Immunoelectron-microscopy analysis reveals that these foci correspond to spherical bodies up to 300 nm in diameter, which contain RP-A, Ku86 and DNA. In an independent in vitro assay, we incubated linear dsDNA bound to magnetic beads with Xenopus egg extracts. Here, also RP-A and Ku cluster in foci as seen through immunofluorescence. Both proteins appear to enrich themselves in sequences near the ends of the DNA molecules and influence ligation efficiency of ds linear DNA to these ends. Thus, the Xenopus in vitro system allows for the generation of specific DNA ds breaks, RP-A and Ku can be used as markers for these lesions and the repair of this type of DNA damage can be studied under conditions of a normal nuclear environment.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.114.18.3345DOI Listing

Publication Analysis

Top Keywords

dna
10
dna double-strand
8
double-strand breaks
8
reconstituted xenopus
8
sperm nuclei
8
rp-a
8
dna replication
8
rp-a foci
8
xenopus egg
8
rp-a ku86
8

Similar Publications

The Ataxia-telangiectasia mutated (ATM) is the most important gene for repairing the DNA in Myelodysplastic Neoplasm.

DNA Repair (Amst)

January 2025

Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil.

Myelodysplastic Neoplasm (MDS) is a cancer associated with aging, often leading to acute myeloid leukemia (AML). One of its hallmarks is hypermethylation, particularly in genes responsible for DNA repair. This study aimed to evaluate the methylation and mutation status of DNA repair genes (single-strand - XPA, XPC, XPG, CSA, CSB and double-strand - ATM, BRCA1, BRCA2, LIG4, RAD51) in MDS across three patient cohorts (Cohort A-56, Cohort B-100, Cohort C-76), using methods like pyrosequencing, real-time PCR, immunohistochemistry, and mutation screening.

View Article and Find Full Text PDF

In eukaryotes, DNA achieves a highly compact structure primarily due to its winding around the histone cores. The nature wrapping of DNA around histone core form a 1.7 left-handed superhelical turns, contributing to negative supercoiling in chromatin.

View Article and Find Full Text PDF

Cell-free assays reveal that the HIV-1 capsid protects reverse transcripts from cGAS immune sensing.

PLoS Pathog

January 2025

Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.

Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells).

View Article and Find Full Text PDF

Neomorphic leukemia-derived mutations in the TET2 enzyme induce genome instability via a substrate shift from 5-methylcytosine to thymine.

Proc Natl Acad Sci U S A

February 2025

Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.

Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!