Prior studies have shown that subclasses of dendritic cells (DC) direct the development of distinct Th populations in rodents and in humans. In the mouse, we have recently shown that administration of Ag-pulsed CD8alpha(-) DC induces a Th2-type response, whereas injection of CD8alpha(+) DC leads to Th1 differentiation. To define the DC-derived factors involved in the polarization of Th responses, we injected either subset purified from mice genetically deficient for IFN-gamma, IL-4, IL-12, or IL-10 into wild-type animals. In this work, we report that DC-derived IL-12 and IFN-gamma are required for Th1 priming by CD8alpha(+) DC, whereas IL-10 is required for optimal development of Th2 cells by CD8alpha(-) DC. The level of IL-12 produced by the DC appears to determine the Th1/Th2 balance in vivo. We further show that the function of DC subsets displays some flexibility. Treatment of DC with IL-10 in vitro induces a selective decrease in the viability of CD8alpha(+) DC. Conversely, incubation with IFN-gamma down-regulates the Th2-promoting capacities of CD8alpha(-) DC and increases the Th1-skewing properties of both subsets.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.167.8.4345DOI Listing

Publication Analysis

Top Keywords

dendritic cells
8
cytokines regulate
4
regulate capacity
4
cd8alpha+
4
capacity cd8alpha+
4
cd8alpha-
4
cd8alpha+ cd8alpha-
4
cd8alpha- dendritic
4
cells
4
cells prime
4

Similar Publications

Background: Cholangiocarcinoma is a challenging malignancy with limited responses to conventional therapies, particularly immune checkpoint inhibitor therapy. Tumor-infiltrating lymphocytes (TILs) and tertiary lymphoid structures (TLSs) are key components of the tumor microenvironment (TME) and have been implicated in the immune response to cancer. However, the role and difference of TLSs and TILs in patients with cholangiocarcinoma remains unclear.

View Article and Find Full Text PDF

Direction selectivity is a fundamental feature in the visual system. In the retina, direction selectivity is independently computed by ON and OFF circuits. However, the advantages of extracting directional information from these two independent circuits are unclear.

View Article and Find Full Text PDF

MCT1 lactate transporter blockade re-invigorates anti-tumor immunity through metabolic rewiring of dendritic cells in melanoma.

Nat Commun

January 2025

Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France.

Dendritic cells (DC) are key players in antitumor immune responses. Tumors exploit their plasticity to escape immune control; their aberrant surface carbohydrate patterns (e.g.

View Article and Find Full Text PDF

T cells play a pivotal role in the development of autoimmune diseases. To mitigate autoimmune inflammation without inducing global immunosuppression, it is crucial to selectively eliminate autoreactive T cell clones while preserving the normal T cell repertoire. In this study, we applied cellular proximity chemistry to develop a T-cell depletion method with clonal precision.

View Article and Find Full Text PDF

Unlabelled: Dendritic cells (DCs) are key regulators of adaptive immunity, guiding T helper (Th) cell differentiation through antigen presentation, co-stimulation, and cytokine production. However, in steady-state conditions, certain DC subsets, such as Langerhans cells (LCs), induce T follicular helper (Tfh) cells and B cell responses without inflammatory stimuli. Using multiple mouse models and systems, we investigated the mechanisms underlying steady-state LC-induced adaptive immune responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!