Dysfunctional endothelial cells have a central and critical role in the initiation and progression of severe pulmonary hypertension. The elucidation of the mechanisms involved in the control of endothelial cell proliferation and cell death in the pulmonary vasculature, therefore, is fundamentally important in the pathogenesis of severe pulmonary hypertension and of great interest for a better understanding of endothelial cell biology. Because the intravascular growth of endothelial cells resulting in tumorlets is unique to severe pulmonary hypertension, this phenomenon can teach researchers about the factors involved in the formation and maintenance of the normal endothelial cell monolayer. Clearly, in severe pulmonary hypertension, the "law of the endothelial cell monolayer" has been broken. The ultimate level of such a control is at the altered gene expression pattern that is conducive to endothelial cell growth and disruption of pulmonary blood flow. Secondary pulmonary hypertension certainly also is associated with proliferated pulmonary endothelial cells and plexiform lesions that are histologically indistinguishable from those in PPH. What is then the difference in the mechanisms of endothelial cell proliferation between primary and secondary pulmonary hypertension? The authors believe that PPH is a disease caused by somatic mutations in key angiogenesis- or apoptosis-related genes such as the TGF-beta receptor-2 and Bax. The loss of these important cell growth control mechanisms allows for the clonal expansion of endothelial cells from a single cell that has acquired a selective growth advantage. On the other hand, the proliferated endothelial cells in secondary pulmonary hypertension are polyclonal. It follows from this finding that local (vascular) factor(s) (such as increased shear stress), rather than mutations, play a major role in triggering endothelial cell proliferation. In PPH and secondary pulmonary hypertension, the researcher can postulate that the pulmonary vascular bed contains progenitor-like cells with the capacity of dysregulated growth. The main difference in the pathogenesis of primary and secondary pulmonary endothelial cell proliferation therefore may be the initial mechanism involved in the recruitment of an endothelial progenitor-like cell. In PPH, anorexigen-associated, and familial PPH, the proliferation of endothelial cells occurs from a mutated single cell, whereas in secondary pulmonary hypertension, several progenitor-like cells would be activated to grow. The abnormal endothelial cells in both forms of severe pulmonary hypertension expand because of the expression of angiogenesis-related molecules such as VEGF, VEGFR-2, HIF-1 alpha, and HIF-beta. Also important for the expansion of these cells is the down-regulation of expression of apoptosis-related mediators such as TGF-beta receptor-2 or Bax. The success of any therapy for severe pulmonary hypertension requires that the underlying process of endothelial cell proliferation could be controlled or reversed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0272-5231(05)70280-x | DOI Listing |
Ann Thorac Surg
January 2025
Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI.
Background: Anastomotic leak after esophagectomy is a major cause of morbidity and mortality. We sought to identify the prevalence of anastomotic leak, stratified by operative approach and disease etiology, as well as risk factors for leak.
Methods: A retrospective cohort analysis using the STS General Thoracic Surgery Database was conducted on patients who underwent esophagectomy with gastric reconstruction between 2009-2021.
Biochem Biophys Res Commun
January 2025
Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China. Electronic address:
Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and elevated pulmonary arterial pressure. Currently, pathogenesis of PAH remains poorly understood, and therapeutic options are limited. In this study, we aimed to explore role of p16INK4A (p16) in the development of PAH using mouse model induced by monocrotaline (MCT).
View Article and Find Full Text PDFLipids Health Dis
January 2025
Department of Cardiology, West China Hospital, Sichuan University West China School of Medicine, 37 Guoxue Road, Chengdu, Sichuan, 610041, China.
Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.
View Article and Find Full Text PDFHeart Fail Rev
January 2025
Department of Cardiology, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy.
Left atrial (LA) hypertension is central in the pathophysiology of heart failure (HF) in general and of HF with preserved ejection fraction (HFpEF) in particular. Despite approved treatments, a number of HF patients continue experiencing disabling symptoms due to LA hypertension, causing pulmonary congestion, pulmonary hypertension, and right heart dysfunction, at rest and/or during exercise. LA decompression therapies, i.
View Article and Find Full Text PDFRadiol Clin North Am
March 2025
Department of Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA; Department of Pediatrics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA. Electronic address:
Pulmonary vascular diseases, particularly when accompanied by pulmonary hypertension, are complex disorders often requiring multimodal imaging for diagnosis and monitoring. Echocardiography is the primary screening tool for pulmonary hypertension, while cardiac MR imaging (CMR) is used for more detailed characterization and risk stratification in right ventricular failure. Chest computed tomography (CT) is used to detect vascular anomalies and parenchymal lung diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!