Surface transformation of bioactive glass in bioreactors simulating microgravity conditions. Part I: experimental study.

Biotechnol Bioeng

Department of Bioengineering, University of Pennsylvania, 3320 Smith Walk, Philadelphia, PA 19104-6315, USA.

Published: November 2001

Surface modified bioactive glass with surface properties akin to those of the bone mineral phase is an attractive candidate for use as a microcarrier material for 3-D growth of bone-like tissue in rotating wall vessel bioreactors (RWVs). The critical surface properties of this material are the result of reaction in solution. Because an RWV environment is completely different from conditions previously employed for bioactive glass testing, a detailed study of the surface reactions is warranted. Under properly chosen conditions, RWVs can also provide a simulated microgravity environment for the bioactive glass (BG) particles. In this sense, this study is also a report on the behavior of a bioactive material under microgravity conditions simulated on earth. A high aspect ratio vessel (HARV) and carefully selected experimental conditions enabled the simulation of microgravity in our laboratory. A complimentary numerical study was simultaneously conducted to ascertain the appropriateness of the experimental parameters (particle size, particle density, medium density, medium viscosity, and rotational speed) that ensure simulated microgravity conditions for the glass particles in the HARV. Physiological solutions (pH 7.4) with and without electrolytes, and also with serum proteins, were used to study the change in surface character resulting from simulated microgravity. Control tests at normal gravity, both static and dynamic, were also conducted. Solution and surface analyses revealed major effects of simulated microgravity. The rates of leaching of constituent ions (Si-, Ca-, and P-ions) were greatly increased in all solutions tested. The enhanced dissolution was followed by the enhanced formation of bone-like minerals at the BG surface. This enhancement is expected to affect adsorption of serum proteins and attachment molecules, which, in turn, may favorably affect bone cell adhesion and function. The findings of the study are important for the use of bioactive materials as microcarriers to generate and analyze 3-D bone-like tissue structures in bioreactors under microgravity conditions or otherwise.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.10023DOI Listing

Publication Analysis

Top Keywords

bioactive glass
16
microgravity conditions
16
simulated microgravity
16
surface
8
microgravity
8
study surface
8
surface properties
8
bone-like tissue
8
glass particles
8
density medium
8

Similar Publications

Antimicrobial properties of bimetallic-containing mesoporous bioglass against .

J Dent Sci

January 2025

Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.

Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.

View Article and Find Full Text PDF

Continuous microenvironment modulation is an ongoing challenge in wound dressing, which includes excessive exudate absorption, oxygen delivery, bacterial inhibition and angiogenesis. Herein, we developed an construction strategy to fabricate a self-retaining double-layered wound dressing, where the top layer precursor was composed of Ca-containing polyvinyl butyral (PVB) solution dispersed with hydroxypropyl methylcellulose (HPMC) particles, and the bottom one consisted of sodium alginate (Alg) solution blended with Ag-doped mesoporous bioactive glass powders (Ag-MBG). When in use, both precursors were simultaneously squeezed out from the twin nozzles connected to the individual chambers of a twin-chambered syringe, whereby Ca in the top layer rapidly migrated downwards to crosslink Alg in the bottom layer, leading to the formation of an Alg/Ag-MBG (AA) functional hydrogel for filling an irregular wound.

View Article and Find Full Text PDF

Aims: This study aimed to evaluate the enamel remineralization effect of fluoride-incorporated bioactive glass (F-BG) toothpaste on artificial subsurface caries in primary teeth.

Materials And Methods: Forty sound primary maxillary incisors were subjected to a demineralizing solution for four days to induce artificial enamel caries. The teeth were randomly divided into four experimental groups ( = 10 per group): Group I, F-BG toothpaste (530 ppm fluoride) (BiominF); Group II, 0.

View Article and Find Full Text PDF

Measurement of Fluoride Ion Release From Restorative Material Using an Ion-Selective Electrode and Ultraviolet-Visible Light Spectrophotometer.

J Int Soc Prev Community Dent

December 2024

Department of Environmental Science, School of Life Sciences, Mysuru, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.

Background: Importance of fluoride in dental restorative materials for preventing secondary caries. Several commercially available tooth-colored dental restorative materials, such as glass ionomer cement, resin composites, and compomers were used for this study.

Aim: To evaluate the amount of fluoride release from tooth-colored restorative materials [Conventional Glass Ionomer Cement (GC Fuji II)], Resin-modified Glass Ionomer Cement (ACTIVA BioACTIVE-RESTORATIVE), and Giomer (BEAUTIFIL II LS)] using ion-selective electrode (ISE) and spectrophotometer using zirconyl alizarin red dye method.

View Article and Find Full Text PDF

Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!