Passive intraperitoneal transfer of sera from Fasciola hepatica-infected sheep, cattle or rats can protect naive rats from F. hepatica infection, suggesting a parasite killing mechanism within the peritoneal cavity that is dependent on the presence of parasite-specific antibody. We investigated antibody-dependent cell-mediated cytotoxicity by resident peritoneal lavage cell populations, containing large numbers of monocytes/macrophages, as a potential host resistance mechanism by which juvenile flukes could be killed within the peritoneal cavity of naive rats. Comparative studies were conducted using cell populations containing large numbers of monocytes/macrophages from sheep. The results demonstrate that monocyte/macrophage-rich lavage cell populations from rat and sheep differ substantially in their ability to generate nitric oxide. Only resident rat peritoneal lavage cells were able to mediate antibody-dependent cell-mediated cytotoxicity against newly excysted juvenile liver fluke. The mechanism of cytotoxicity was dependent on, and directly proportional to, the production of nitric oxide and required attachment of effector cells to the newly excysted juvenile liver fluke tegument, which occurred following the addition of sera from F. hepatica-infected animals. This is the first report demonstrating a mechanism of cell-mediated cytotoxicity to newly excysted juvenile liver fluke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-3024.2001.00404.x | DOI Listing |
Cancers (Basel)
January 2025
Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany.
Background/objectives: MDG1011 is an autologous TCR-T therapy developed as a treatment option for patients with myeloid malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). It is specific for the target antigen PReferentially expressed Antigen in MElanoma (PRAME). The recombinant TCR used in MDG1011 recognizes PRAME VLD-peptide presented by HLA-A*02:01-encoded surface molecules.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
Background: In the past decade, immunotherapy has become a major choice for the treatment of lung cancer, yet its therapeutic efficacy is still relatively limited due to the various immune escape mechanisms of tumors. Based on this, we introduce Neo-BCV, a novel bacterial composite vaccine designed to enhance immune responses against lung cancer.
Methods: We investigated the immune enhancing effect of Neo-BCV through in vivo and in vitro experiments, including flow cytometry, RNA-seq, and Western blot.
Cells
January 2025
Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Kaposi Sarcoma (KS) is a vascular tumor originating from endothelial cells and is associated with human herpesvirus 8 (KSHV) infection. It disproportionately affects populations facing health disparities. Although antiretroviral therapy (ART) has improved KS control in people with HIV (PWH), treatment options for advanced KS remain limited.
View Article and Find Full Text PDFCells
January 2025
Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA.
We demonstrate that natural killer (NK) cells induce a higher cytotoxicity against lung cancer stem-like cells (hA549) compared to differentiated lung cancer cell lines (H292). The supernatants from split-anergized NK cells (IL-2 and anti-CD16 mAb-treated NK cells) induced differentiation in hA549. Differentiated lung cancer cell line (H292) and NK cells differentiated hA549 expressed reduced NK cell-mediated cytotoxicity but expressed higher sensitivity to chemotherapeutic drugs.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
CD8T cells within the tumor microenvironment (TME) are often functionally impaired, which limits their ability to mount effective anti-tumor responses. However, the molecular mechanisms behind this dysfunction remain incompletely understood. Here, we identified valosin-containing protein (VCP) as a key regulator of CD8T cells suppression in hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!