In the initial phase of ripening, the microflora of bacterial smear surface-ripened cheeses such as Limburger, Taleggio, Brick, Münster and Saint-Paulin and that of surface mould-ripened cheeses such as Camembert and Brie may be similar, but at the end of the ripening, bacteria such as Brevibacterium spp., Arthrobacter spp., Micrococcus spp., Corynebacterium spp. and moulds such as Penicillium camemberti are, respectively, the dominant microorganisms. Yeasts such as Candida spp., Cryptococcus spp., Debaryomyces spp., Geotrichum candidum, Pichia spp., Rhodotorula spp., Saccharomyces spp. and Yarrowia lipolytica are often and variably isolated from the smear surface-ripened cheeses. Although not dominant within the microorganisms of the smear surface-ripened cheeses, yeasts establish significant interactions with moulds and especially bacteria, including surface bacteria and lactic acid bacteria. Some aspects of the interactions between yeasts and bacteria in such type of cheeses are considered in this paper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0168-1605(01)00567-0 | DOI Listing |
Foods
January 2024
Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
Smear-ripened cheeses are characterized by a viscous, red-orange surface smear on their rind. It is the complex surface microbiota on the cheese rind that is responsible for the characteristic appearance of this cheese type, but also for the wide range of flavors and textures of the many varieties of smear-ripened cheeses. The surface smear microbiota also represents an important line of defense against the colonization with undesirable microorganisms through various types of interaction, such as competitive exclusion or production of antimicrobial substances.
View Article and Find Full Text PDFInt J Food Microbiol
September 2023
Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, Canada; Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, QC, Canada. Electronic address:
Phages are ubiquitous and are particularly abundant in environments where their bacterial hosts thrive, such as those in the cheese industry. Although it is well documented that phages infect lactic acid bacteria, their impact has been notably overlooked on cheese ripening strains, such as Brevibacterium aurantiacum. Here, we aimed to study the impact of B.
View Article and Find Full Text PDFFoods
January 2022
Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
The smear of surface-ripened cheese harbors complex microbiota mainly composed of typical Gram-positive aerobic bacteria and yeast. Gram-negative bacteria are usually classified as un-wanted contaminants. In order to investigate the abundance and impact of Gram-negative bacte-ria naturally occurring in the smear of surface-ripened cheese, we performed a culture-based analysis of smear samples from 15 semi-hard surface-ripened cheese varieties.
View Article and Find Full Text PDFAIMS Microbiol
October 2018
Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
The complex smear microbiota colonizing the surface of red-smear cheese fundamentally impacts the ripening process, appearance and shelf life of cheese. To decipher the prokaryotic composition of the cheese smear microbiome, the surface of a semi-hard surface ripened cheese was studied post-ripening by culture-based and culture-independent molecular approaches. The aim was to detect potential bacterial alterations in the composition of the cheese smear microbiota resulting from cheese storage in vacuum film-prepackaging, which is often accompanied by the development of a surface smear defect.
View Article and Find Full Text PDFmSystems
January 2018
Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.
In this study, a young Cheddar curd was used to produce two types of surface-ripened cheese, using two commercial smear-culture mixes of yeasts and bacteria. Whole-metagenome shotgun sequencing was used to screen the microbial population within the smear-culture mixes and on the cheese surface, with comparisons of microorganisms at both the species and the strain level. The use of two smear mixes resulted in the development of distinct microbiotas on the surfaces of the two test cheeses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!