The mammalian CNS contains an abundance of chelatable Zn(2+) sequestered in the vesicles of glutamatergic terminals. These vesicles are particularly numerous in hippocampal mossy fiber synapses of the hilar and CA3 regions. Our recent observation of frequency-dependent Zn(2+) release from mossy fiber synaptic terminals and subsequent entry into postsynaptic neurons has prompted us to investigate the role of synaptically released Zn(2+) in the induction of long-term potentiation (LTP) in field CA3 of the hippocampus. The rapid removal of synaptically released Zn(2+) with the membrane-impermeable Zn(2+) chelator CaEDTA (10 mm) blocked induction of NMDA receptor-independent mossy fiber LTP by high-frequency electrical stimulation (HFS) in rat hippocampal slices. Mimicking Zn(2+) release by bath application of Zn(2+) (50-100 microm) without HFS induced a long-lasting potentiation of synaptic transmission that lasted more than 3 hr. Moreover, our experiments indicate the effects of Zn(2+) were not attributable to its interaction with extracellular membrane proteins but required its entry into presynaptic or postsynaptic neurons. Co-released glutamate is also essential for induction of LTP under physiological conditions, in part because it allows Zn(2+) entry into postsynaptic neurons. These results indicate that synaptically released Zn(2+), acting as a second messenger, is necessary for the induction of LTP at mossy fiber-->CA3 synapses of hippocampus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6763855PMC
http://dx.doi.org/10.1523/JNEUROSCI.21-20-08015.2001DOI Listing

Publication Analysis

Top Keywords

mossy fiber
16
synaptically released
16
released zn2+
16
postsynaptic neurons
12
zn2+
11
long-term potentiation
8
zn2+ release
8
entry postsynaptic
8
induction ltp
8
induction
5

Similar Publications

The hippocampus forms memories of our experiences by registering processed sensory information in coactive populations of excitatory principal cells or ensembles. Fast-spiking parvalbumin-expressing inhibitory neurons (PV INs) in the dentate gyrus (DG)-CA3/CA2 circuit contribute to memory encoding by exerting precise temporal control of excitatory principal cell activity through mossy fiber-dependent feed-forward inhibition. PV INs respond to input-specific information by coordinating changes in their intrinsic excitability, input-output synaptic-connectivity, synaptic-physiology and synaptic-plasticity, referred to here as experience-dependent PV IN plasticity, to influence hippocampal functions.

View Article and Find Full Text PDF

Effects of MeCP2 on chronic seizures and cognitive function in mice with temporal lobe epilepsy.

Epilepsy Res

January 2025

Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China. Electronic address:

Mutations in methyl CpG binding protein 2 (MeCP2) are linked to Rett syndrome, in which epilepsy is one of the most well-described disorders. However, little is known about the specific role of MeCP2 during epileptogenesis. Our previous study has demonstrated that MeCP2 has a unique control on the development of mossy fiber sprouting (MFS) in the epileptic hippocampus.

View Article and Find Full Text PDF

A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.

View Article and Find Full Text PDF

Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings.

View Article and Find Full Text PDF

Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!