Secretion in alveolar type II cells at the interface of constitutive and regulated exocytosis.

Am J Respir Cell Mol Biol

Department of Physiology, University of Innsbruck, Innsbruck, Austria.

Published: September 2001

Long-term, simultaneous, measurements of cytoplasmic free Ca(2+) concentrations and single exocytotic fusion events in surfactant-secreting type II cells were performed. All fusion (constitutive, phorbol ester-induced, and agonist-induced) was Ca(2+)-dependent. Kinetic analysis revealed that agonist (adenosine triphosphate [ATP])-induced fusion exhibited a kinetic pattern that correlated well with the Ca(2+) signal. The effects of Ca(2+) release from intracellular stores (early) and Ca(2+) entry (late) could be demonstrated for the first time by dissecting the slow (10-to-15-min) fusion response to ATP into these two components. Bath Ba(2+) or Sr(2+) could replace Ca(2+) to elicit a fusion response in thapsigargin-pretreated cells lacking ATP-induced Ca(2+) release from stores. Although the late response was partially inhibited by interrupting the phospholipase D-protein kinase C axis, a high Ca(2+) dependence of the entire secretory course was demonstrated by a significant correlation between the integrated Ca(2+) signal and the fusion response. There was also a highly significant correlation between constitutive and ATP-stimulated fusion activity in individual cells. We propose a common mechanistic model for all types of fusion in this slow secretory cell, in which constitutive and regulated forms of exocytosis are subject to the same principles of regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1165/ajrcmb.25.3.4493DOI Listing

Publication Analysis

Top Keywords

fusion response
12
type cells
8
constitutive regulated
8
ca2+
8
fusion
8
ca2+ signal
8
ca2+ release
8
secretion alveolar
4
alveolar type
4
cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!