Genetic factors, in particular human leukocyte antigens (HLAs) are important determinants of susceptibility to sarcoidosis, a chronic granulomatous disease of undetermined etiology. To clarify the role of HLA in sarcoidosis we determined HLA-DR and -DQ alleles in case-control samples from three European populations (United Kingdom, Czech, and Polish) and compared these results with those published for three additional populations (Italian, Japanese, and Scandinavian) to determine whether the HLA-DR and/or -DQ alleles act as ethnic-dependent, or ethnic-independent modifiers of disease risk. Although variations were apparent in the alleles associated with susceptibility, reductions in the frequency of alleles associated with protection were remarkably consistent in the six populations. Previously detected associations between single-nucleotide polymorphisms at the TAP2 locus and sarcoidosis were shown to be due to linkage disequilibrium with the HLA-DR locus. The protective HLA-DR alleles, which encode the DR1 and DR4 antigens, were found to share characteristic small hydrophobic residues at position 11, which were replaced by small hydrophilic residues in the remaining, nonprotective, HLA-DR alleles. This residue position is within a pocket of the HLA-DR complex antigen binding groove (designated P6), where it is the only variable amino acid and therefore determines the peptide binding preferences of this pocket. A highly significant reduction in the frequency of individuals carrying HLA-DR alleles with a hydrophobic residue at position 11 was observed in the sarcoidosis cases in the three populations we examined. This suggests this HLA-DR residue is an important protective marker in sarcoidosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1165/ajrcmb.25.3.4261 | DOI Listing |
Drug Metab Rev
January 2025
Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
Idiosyncratic drug reactions (IDRs) pose severe threats to patient health. Unlike conventionally dose-dependent side effects, they are unpredictable and frequently manifest as life-threatening conditions, such as severe cutaneous adverse reactions (SCARs) and drug-induced liver injury (DILI). Some HLA alleles, such as , , and , are known risk factors for adverse reactions induced by multiple drugs.
View Article and Find Full Text PDFHeliyon
January 2025
Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, USM Pulau Pinang, Malaysia.
Introduction: Severe cutaneous adverse reactions (SCARs) are life-threatening and often linked to antiepileptic drugs (AEDs). Common types of SCARs include Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS). Immune-mediated mechanisms involving human leukocyte antigen () alleles have been implicated in the pathogenesis of this reaction.
View Article and Find Full Text PDFLiver Int
February 2025
Liver Disease Research Branch, Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA.
Background And Aims: Short courses of intravenous (iv) methylprednisolone (MP) can cause drug induced liver injury (DILI). The aim of this study was to assess the clinical features and HLA associations of MP-related DILI enrolled in the US DILI Network (DILIN).
Methods: DILIN cases with MP as a suspected drug were reviewed.
Int J Mol Sci
December 2024
Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil.
Citrullination, a post-translational modification (PTM), plays a critical role in rheumatoid arthritis (RA) by triggering immune responses to citrullinated self-antigens. Some HLA-DRB1 genes encode molecules with the shared epitope (QKRAA/QRRAA) sequence in the peptide-binding groove which preferentially presents citrulline-modified peptides, like vimentin, that intensifies the immune response in RA. In this study, we used computational approaches to evaluate intermolecular interactions between vimentin peptide-ligands (with/without PTM) and HLA-DRB1 alleles associated with a significantly increased risk for RA development.
View Article and Find Full Text PDFHLA
January 2025
Immunology Unit, Clinical Analysis Department, Albacete University Hospital Complex, Albacete, Spain.
HLA-DRB1*08:130 shows a Leucine at position 64 not described previously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!