High-frequency stimulation of afferents to the supraoptic nucleus (SON) results in a robust increase in the frequency and amplitude of pharmacologically isolated, tetrodotoxin-resistant, miniature excitatory postsynaptic currents (mEPSCs) lasting for 5-20 min. This increase in mEPSC frequency, termed short-term potentiation (STP), is tightly coupled to increases in action potential firing in magnocellular neurons (MCNs) suggesting a functional role for STP. gamma-Aminobutyric acid (GABA), acting selectively on GABA(B) receptors, has been shown to modulate action potential-dependent EPSCs, as well as mEPSCs in this nucleus. In this study, we examined the role of GABA in STP. Using in vitro hypothalamic slices containing the SON and the nystatin perforated-patch recording technique to record from MCNs, we tested the hypothesis that GABA modulates STP. Baclofen, a GABA(B) receptor agonist, caused a reversible decrease in the frequency of mEPSCs as well as a reduction in the magnitude and duration of STP. GABA(B) receptor antagonists blocked the baclofen-induced decrease in mEPSC frequency and reduction in STP. In addition, the antagonists by themselves increased basal mEPSC frequency while prolonging the duration of STP in most cells. By contrast, picrotoxin, a GABA(A) chloride channel blocker, had no effect on STP.These findings indicate that GABA is tonically present in the SON and its action at the GABA(B) receptor may determine the magnitude and duration of STP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0028-3908(01)00098-3DOI Listing

Publication Analysis

Top Keywords

mepsc frequency
12
gabab receptor
12
duration stp
12
gabab receptors
8
receptors modulate
8
short-term potentiation
8
excitatory postsynaptic
8
postsynaptic currents
8
supraoptic nucleus
8
stp
8

Similar Publications

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

Aims: Stroke is a major public health concern leading to high rates of death and disability worldwide, unfortunately with no effective treatment available for stroke recovery during the repair phase.

Methods: Photothrombotic stroke was induced in mice. Adeno-associated viruses (AAV) were microinjected into the peri-infarct cortex immediately after photothrombotic stroke.

View Article and Find Full Text PDF

Mechanisms of delta opioid receptor inhibition of parallel fibers-purkinje cell synaptic transmission in the mouse cerebellar cortex.

Brain Res

December 2024

Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China. Electronic address:

Delta opioid receptors (DORs) are widely expressed throughout the central nervous system, including the cerebellum, where they play a regulatory role in neurogenesis. In the cerebellar cortex, Purkinje cells (PCs), the sole output neurons, receive glutamatergic synaptic input from parallel fibers (PFs)-the axonal extensions of granule cells-forming PF-PC synapses. However, the precise distribution of DORs within these synapses and their impact on synaptic transmission remain unclear.

View Article and Find Full Text PDF

Maternal separation (MS) increases the risk of occurrence of anxiety, depression, and learning and memory impairment in offspring. However, the underlying molecular biological mechanisms remain unclear. In the current study, offspring CD-1 mice were separated from their mothers from postnatal day 4 to postnatal day 21.

View Article and Find Full Text PDF
Article Synopsis
  • Traditional Chinese medicine, specifically astilbin, is studied for its effectiveness in managing pain, focusing on its active components and methods of action.
  • Experiments using neuropathic rat models demonstrated that both systemic and spinal delivery of astilbin significantly reduced both chronic and acute pain behaviors, with specific effective dosing identified.
  • The study highlighted that astilbin works by influencing neuronal metabolic processes and modulating excitatory synaptic activity, leading to its pain-relieving effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!