Calcium and calcium-dependent processes have been hypothesized to be involved in the induction of epilepsy. It has been shown that epileptic neurons have altered calcium homeostatic mechanisms following epileptogenesis in the hippocampal neuronal culture (HNC) and pilocarpine models of epilepsy. To investigate the mechanisms causing these alterations in [Ca2+]i homeostatic processes following epileptogenesis, we utilized the HNC model of in vitro 'epilepsy' which produces spontaneous recurrent epileptiform discharges (SREDs). Using [Ca2+]i imaging, studies were initiated to evaluate the mechanisms mediating these changes in [Ca2+]i homeostasis. 'Epileptic' neurons required much longer to restore a glutamate induced [Ca2+]i load to baseline levels than control neurons. Inhibition of Ca2+ entry through voltage and receptor gated Ca2+ channels and stretch activated Ca2+ channels had no effect on the prolonged glutamate induced increase in [Ca2+]i in epileptic neurons. Employing thapsigargin, an inhibitor of the sarco/endoplasmic reticulum calcium ATPase (SERCA), it was shown that thapsigargin inhibited sequestration of [Ca2+]i by SERCA was significantly decreased in 'epileptic' neurons. Using Ca2+ induced Ca2+ release (CICR) cell permeable inhibitors for the ryanodine receptor (dantrolene) and the IP3 receptor (2-amino-ethoxydiphenylborate, 2APB) mediated CICR, we demonstrated that CICR was significantly augmented in the 'epileptic' neurons, and determined that the IP3 receptor mediated CICR was the major release mechanism altered in epileptogenesis. These data indicate that both inhibition of SERCA and augmentation of CICR activity contribute to the alterations accounting for the impaired calcium homeostatic processes observed in 'epileptic' neurons. The results suggest that persistent changes in [Ca2+]i levels following epileptogenesis may contribute to the long-term plasticity changes manifested in epilepsy and that understanding the basic mechanisms mediating these changes may provide an insight into the development of novel therapeutic approaches to treat epilepsy and prevent or reverse epileptogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1054/ceca.2001.0236DOI Listing

Publication Analysis

Top Keywords

'epileptic' neurons
16
hippocampal neuronal
8
neuronal culture
8
epileptic neurons
8
calcium homeostatic
8
homeostatic processes
8
mechanisms mediating
8
mediating changes
8
changes [ca2+]i
8
glutamate induced
8

Similar Publications

P2YR-IGFBP2 signaling: new contributor to astrocyte-neuron communication.

Purinergic Signal

January 2025

International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.

In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.

View Article and Find Full Text PDF

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Muscarinic cannabinoid suppression of excitation, a novel form of coincidence detection.

Pharmacol Res

January 2025

Gill Institute for Neuroscience; Dept. of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405. Electronic address:

Δ-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, acts in the brain primarily via cannabinoid CB1 receptors. These receptors are implicated in several forms of synaptic plasticity - depolarization-induced suppression of excitation (DSE), metabotropic suppression of excitation (MSE), long term depression (LTD) and activation-dependent desensitization. Cultured autaptic hippocampal neurons express all of these, illustrating the rich functional and temporal heterogeneity of CB1 at a single set of synapses.

View Article and Find Full Text PDF

Lack of context modulation in human single neuron responses in the medial temporal lobe.

Cell Rep

January 2025

Centre for Systems Neuroscience, University of Leicester, Leicester, UK; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain; Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

In subjects implanted with intracranial electrodes, we use two different stories involving the same person (or place) to evaluate whether and to what extent context modulates human single-neuron responses. Nearly all neurons (97% during encoding and 100% during recall) initially responding to a person/place do not modulate their response with context. Likewise, nearly none (<1%) of the initially non-responsive neurons show conjunctive coding, responding to particular persons/places in a particular context during the tasks.

View Article and Find Full Text PDF

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death, likely stemming from seizure activity disrupting vital brain centres controlling heart and breathing function. However, understanding of SUDEP's anatomical basis and mechanisms remains limited, hampering risk evaluation and prevention strategies. Prior studies using a neuron-specific conditional knockout mouse model of SUDEP identified the primary importance of brain-driven mechanisms contributing to sudden death and cardiorespiratory dysregulation; yet, the underlying neurocircuits have not been identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!