AI Article Synopsis

  • The study aimed to assess the occurrence of pathogenic mitochondrial transfer RNA (mtRNA) mutations in patients with respiratory chain (RC) deficiencies.
  • The research involved screening skeletal muscle DNA from 225 patients showing symptoms of mitochondrial disorders, revealing that 29% had pathogenic mutations, with a higher detection rate in adults (48%) compared to children (18%).
  • The findings also include novel mtRNA sequence variations and highlight a specific heteroplasmic mutation linked to a unique neurological syndrome.

Article Abstract

Objective: To evaluate the frequency of pathogenic mtDNA transfer RNA mutations and deletions in biochemically demonstrable respiratory chain (RC) deficiencies in paediatric and adult patients.

Methods: We screened for deletions and sequenced mitochondrial transfer RNA genes in skeletal muscle DNA from 225 index patients with clinical symptoms suggestive of a mitochondrial disorder and with biochemically demonstrable RC deficiency in skeletal muscle.

Results: We found pathogenic mitochondrial DNA mutations in 29% of the patients. The detection rate was significantly higher in adults (48%) than in the paediatric group (18%). Only one pathogenic mutation was detected in the neonatal group. In addition, we describe seven novel transfer RNA sequence variations with unknown pathogenic relevance (six homoplasmic and one heteroplasmic) and 13 homoplasmic polymorphisms. One heteroplasmic transfer RNA(Leu(UUR)) A>G mutation at position 3274 is associated with a distinct neurological syndrome.

Conclusions: We provide an estimation of the frequency of mitochondrial transfer RNA mutations and deletions in paediatric and adult patients with respiratory chain deficiencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1734743PMC
http://dx.doi.org/10.1136/jmg.38.10.665DOI Listing

Publication Analysis

Top Keywords

transfer rna
20
mitochondrial transfer
12
rna mutations
12
mutations deletions
12
respiratory chain
12
chain deficiencies
12
frequency mitochondrial
8
225 patients
8
biochemically demonstrable
8
paediatric adult
8

Similar Publications

The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.

View Article and Find Full Text PDF

One strategy for CO mitigation is using photosynthetic microorganisms to sequester CO under high concentrations, such as in flue gases. While elevated CO levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp.

View Article and Find Full Text PDF

Mitochondrial genomes are a rich source of data for various downstream analyses such as population genetics, phylogeny, and systematics. Today it is possible to assemble rapidly large numbers of mitogenomes, mainly employing next-generation sequencing and third-generation sequencing. However, verification of the correctness of the generated sequences is often lacking, especially for noncoding, length-variable parts.

View Article and Find Full Text PDF

N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential.

J Hematol Oncol

January 2025

Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.

View Article and Find Full Text PDF

Background: The rapid mutation of avian influenza virus (AIV) poses a significant threat to both the poultry industry and public health. Herein, we have successfully developed an mRNA-LNPs candidate vaccine for H5 subtype highly pathogenic avian influenza and evaluated its immunogenicity and protective efficacy.

Results: In experiments on BALB/c mice, the vaccine candidate elicited strong humoral and a certain cellular immune responses and protected mice from the heterologous AIV challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!