Demyelination in multiple sclerosis and in animal models is associated with infiltrating CD8+ and CD4+ T cells. Although oligodendrocytes and axons are damaged in these diseases, the roles T cells play in the demyelination process are not completely understood. Antigen-specific CD8+ T cell lysis of target cells is dependent on interactions between the T cell receptor and major histocompatibility complex (MHC) class I-peptide complexes on the target cell. In the normal central nervous system, expression of MHC molecules is very low but often increases during inflammation. We set out to precisely define which central nervous system cells express MHC molecules in vivo during infection with a strain of murine hepatitis virus that causes a chronic, inflammatory demyelinating disease. Using double immunofluorescence labeling, we show that during acute infection with murine hepatitis virus, MHC class I is expressed in vivo by oligodendrocytes, neurons, microglia, and endothelia, and MHC class II is expressed only by microglia. These data indicate that oligodendrocytes and neurons have the potential to present antigen to T cells and thus be damaged by direct antigen-specific interactions with CD8+ T lymphocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1850521 | PMC |
http://dx.doi.org/10.1016/S0002-9440(10)62507-2 | DOI Listing |
ASN Neuro
January 2025
Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA.
Despite tremendous progress in characterizing the myriad cellular structures in the nervous system, a full appreciation of the interdependent and intricate interactions between these structures is as yet unfulfilled. Indeed, few more so than the interaction between the myelin internode and its ensheathed axon. More than a half-century after the ultrastructural characterization of this axomyelin unit, we lack a reliable understanding of the physiological properties, the significance and consequence of pathobiological processes, and the means to gauge success or failure of interventions designed to mitigate disease.
View Article and Find Full Text PDFNat Neurosci
January 2025
Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.
Our understanding of Alzheimer's disease (AD) has transformed from a purely neuronal perspective to one that acknowledges the involvement of glial cells. Despite remarkable progress in unraveling the biology of microglia, astrocytes and vascular elements, the exploration of oligodendrocytes in AD is still in its early stages. Contrary to the traditional notion of oligodendrocytes as passive bystanders in AD pathology, emerging evidence indicates their active participation in and reaction to amyloid and tau pathology.
View Article and Find Full Text PDFJ Cell Mol Med
February 2025
Department of Neurobiology, Key Laboratory of Molecular Neurobiology of the Ministry of Education, Naval Medical University, Shanghai, China.
Myelin is the key structure for high-speed information transmission and is formed by oligodendrocytes (OLs) which are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system. Lipid is the main component of myelin and the role of lipid metabolism-related molecules in myelination attach increasing attention. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) mediates the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC), and its role in myelination draws our interest as LPC is a classical demyelination inducer and PC is a major component of myelin.
View Article and Find Full Text PDFNeuropsychiatr Dis Treat
January 2025
Department of Rehabilitation Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People's Republic of China.
As the aging process accelerates and living conditions improve, central nervous system (CNS) diseases have become a major public health problem. Diseases of the CNS cause not only gray matter damage, which is primarily characterized by the loss of neurons, but also white matter damage. However, most previous studies have focused on grey matter injury (GMI), with fewer studies on white matter injury (WMI).
View Article and Find Full Text PDFFront Immunol
January 2025
Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands.
Introduction: Remyelination of demyelinated axons can occur as an endogenous repair mechanism in multiple sclerosis (MS), but its efficacy varies between both MS individuals and lesions. The molecular and cellular mechanisms that drive remyelination remain poorly understood. Here, we studied the relation between microglia activation and remyelination activity in MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!