Our previous studies have shown that targeting DNA vaccine-encoded major histocompatibility complex class I epitopes to the proteasome enhanced CD8(+) T-cell induction and protection against lymphocytic choriomeningitis virus (LCMV) challenge. Here, we expand these studies to evaluate CD4(+) T-cell responses induced by DNA immunization and describe a system for targeting proteins and minigenes to lysosomes. Full-length proteins can be targeted to the lysosomal compartment by covalent attachment to the 20-amino-acid C-terminal tail of lysosomal integral membrane protein-II (LIMP-II). Using minigenes encoding defined T-helper epitopes from lymphocytic choriomeningitis virus, we show that the CD4(+) T-cell response induced by the NP(309-328) epitope of LCMV was greatly enhanced by addition of the LIMP-II tail. However, the immunological consequence of lysosomal targeting is not invariably positive; the CD4(+) T-cell response induced by the GP(61-80) epitope was almost abolished when attached to the LIMP-II tail. We identify the mechanism which underlies this marked difference in outcome. The GP(61-80) epitope is highly susceptible to cleavage by cathepsin D, an aspartic endopeptidase found almost exclusively in lysosomes. We show, using mass spectrometry, that the GP(61-80) peptide is cleaved between residues F(74) and K(75) and that this destroys its ability to stimulate virus-specific CD4(+) T cells. Thus, the immunological result of lysosomal targeting varies, depending upon the primary sequence of the encoded antigen. We analyze the effects of CD4(+) T-cell priming on the virus-specific antibody and CD8(+) T-cell responses which are mounted after virus infection and show that neither response appears to be accelerated or enhanced. Finally, we evaluate the protective benefits of CD4(+) T-cell vaccination in the LCMV model system; in contrast to DNA vaccine-induced CD8(+) T cells, which can confer solid protection against LCMV challenge, DNA vaccine-mediated priming of CD4(+) T cells does not appear to enhance the vaccinee's ability to combat viral challenge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC114616PMC
http://dx.doi.org/10.1128/JVI.75.21.10421-10430.2001DOI Listing

Publication Analysis

Top Keywords

cd4+ t-cell
20
cd4+ cells
12
lysosomal targeting
12
cd4+
8
induced dna
8
cd8+ t-cell
8
lymphocytic choriomeningitis
8
choriomeningitis virus
8
lcmv challenge
8
t-cell responses
8

Similar Publications

Epstein-Barr virus (EBV)-related hemophagocytic lymphohistiocytosis (EBV-HLH) and infectious mononucleosis (IM) are characterized by fever, hepatomegaly, and splenomegaly, but HLH has a 50% lethality rate. Therefore, this study aimed to compare the laboratory findings in differentiating EBV-HLH children from IM children who have fever, hepatomegaly, or splenomegaly. A total of 131 IM patients and 29 EBV-HLH pediatric patients with fever, hepatomegaly, or splenomegaly were enrolled in our study.

View Article and Find Full Text PDF

Elusive modes of Foxp3 activity in versatile regulatory T cells.

Front Immunol

January 2025

Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States.

Foxp3-expressing CD4 regulatory T (Treg) cells play a crucial role in suppressing autoimmunity, tolerating food antigens and commensal microbiota, and maintaining tissue integrity. These multifaceted functions are guided by environmental cues through interconnected signaling pathways. Traditionally, Treg fate and function were believed to be statically determined by the forkhead box protein Foxp3 that directly binds to DNA.

View Article and Find Full Text PDF

Introduction: The regulation of expression during T-cell development and immune responses is essential for proper lineage commitment and function in the periphery. However, the mechanisms of genetic and epigenetic regulation are complex, and their interplay not entirely understood. Previously, we demonstrated the need for CD4 upregulation during positive selection to ensure faithful commitment of MHC-II-restricted T cells to the CD4 lineage.

View Article and Find Full Text PDF

The dynamics of CD4+ T cell proliferation and regulation.

J Biol Dyn

December 2025

School of Mathematics and Statistics, Donghua University, Shanghai, People's Republic of China.

We use mathematical modeling to study the proliferation dynamics of CD4+ T cells within an immune response. This proliferation is driven by the autocrine reaction of helper T cells and interleukin-2 (IL-2), and regulated by natural regulatory T cells (nTregs). Previous studies suggested that a fratricidal mechanism is necessary to eliminate helper T cells post-infection.

View Article and Find Full Text PDF

Autoimmune liver diseases (AILD) involve dysregulated CD4 T cell responses against liver self-antigens, but how these autoreactive T cells relate to liver tissue pathology remains unclear. Here we perform single-cell transcriptomic and T cell receptor analyses of circulating, self-antigen-specific CD4 T cells from patients with AILD and identify a subset of liver-autoreactive CD4 T cells with a distinct B-helper transcriptional profile characterized by PD-1, TIGIT and HLA-DR expression. These cells share clonal relationships with expanded intrahepatic T cells and exhibit transcriptional signatures overlapping with tissue-resident T cells in chronically inflamed environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!