Agrobacterium tumefaciens transfers DNA from the resident 'tumour-inducing' (Ti) plasmid into plant cells, where it can be stably integrated into the plant genome, ultimately resulting in crown gall tumour formation. The mobilized DNA molecule is a single-stranded intermediate with VirD2 covalently bound to its 5' end. Successful transport of the transferred DNA (T-DNA) and integration of the DNA into the genome requires that additional proteins be transported to the plant as well, including the single-stranded (ss)DNA-binding protein, VirE2. The transport of these two different substrates occurs as a result of the activities of a type IV secretion system encoded by the virB operon. Although the substrates have been identified, the mechanism of their transport remains unknown. In the experiments described here, a region in one of these substrates, VirE2, necessary for transport is identified. The addition of a C-terminal FLAG epitope tag to VirE2, or the deletion of its C-terminal 18 amino acids, renders it non-functional in A. tumefaciens. However, transgenic plants expressing either of these virE2 genes respond to virE2 mutants of A. tumefaciens by forming wild-type tumours. These results indicate that this region of VirE2 is necessary for the protein to be transported into the plant cells, but is not necessary for its function within the plant. Additionally, these studies demonstrate that mutant forms of VirE2 lacking this region do not disrupt the activities of the VirB transporter and support the hypothesis that VirE2 and the VirD2 T-strand are transported independently, even when they co-exist in the same cell.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.2001.02582.xDOI Listing

Publication Analysis

Top Keywords

agrobacterium tumefaciens
8
plant cells
8
transported plant
8
vire2
8
vire2 transport
8
transport
6
plant
5
carboxy-terminus vire2
4
vire2 agrobacterium
4
tumefaciens
4

Similar Publications

Burkholderia contaminans SK875, a member of Burkholderia cepacia complex (Bcc), are known to cause lung infections in cystic fibrosis patients. To gain deeper insights into its quorum sensing (QS)-mediated pathogenicity, we employed a transposon (Tn) insertion-based random mutagenesis approach. A Tn mutant library comprising of 15,000 transconjugants was generated through conjugation between wild-type (WT) recipient B.

View Article and Find Full Text PDF

Complete genome sequence of the marine mangrove fungus Sarcopodium sp.QM3-1 confirmed its high potential for antimicrobial activity.

Mar Genomics

March 2025

Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China; Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, China. Electronic address:

Mangroves, owing to their unique living environment, serve as an important source of natural bioactive compounds. Sarcopodium sp. QM3-1, a marine fungus isolated from mangrove sediments of Quanzhou Bay, exhibited antifungal activity against the plant pathogen Agrobacterium tumefaciens and Magnaporthe oryzae.

View Article and Find Full Text PDF

Bacteriophages as viral predators can restrict host strains and shape the bacterial community. Conversely, bacteria also adopt diverse strategies for phage defense. Pseudomonas syringae pv.

View Article and Find Full Text PDF

Transgene-free genome editing in poplar.

New Phytol

January 2025

Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.

Precise gene-editing methods are valuable tools to enhance genetic traits. Gene editing is commonly achieved via stable integration of a gene-editing cassette in the plant's genome. However, this technique is unfavorable for field applications, especially in vegetatively propagated plants, such as many commercial tree species, where the gene-editing cassette cannot be segregated away without breaking the genetic constitution of the elite variety.

View Article and Find Full Text PDF

Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!