We formulate the boundary conditions near the atomic nucleus for solving the Pauli equation, based on the analytic solution of the Dirac equation for a Coulomb potential. We then integrate the Pauli equation using an effective potential that is adjusted to reproduce Dirac R-matrix scattering phase shifts, and find the (3)P(o)(1) resonance contribution to the photodetachment cross section of Cs-. Our photodetachment cross sections agree with recent experiments by Scheer et al. [Phys. Rev. Lett. 80, 684 (1998)] after tuning the resonance position by 2.4 meV. We also provide angle-differential photodetachment cross sections and the corresponding asymmetry parameter beta near the Cs(6s) threshold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.87.123003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!