gamma-Zein, a maize storage protein with an N-terminal proline-rich repetitive domain (gamma-ZNPRD), is located at the periphery of protein bodies. This domain appears to be indispensable for the aggregation of the protein on the surface of the organelle. The peptide (VHLPPP)8, spanning the gamma-ZNPRD, adopts a polyproline II (PPII) conformation that gives an amphipathic helix different from the alpha-helix. We used atomic force microscopy to study the surface organisation of the octamer, and transmission electron microscopy to visualise aggregates of the peptide in aqueous solution. We consider two self-assembly patterns that take account of the observed features. The micellar one fits best with the experimental results presented. Moreover, we found that this peptide has properties associated with surfactants, and form micelles in solution. This spontaneous amphipathic arrangement of the gamma-ZNPRD suggests a mechanism of gamma-zein deposition inside maize protein bodies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.2001.4999 | DOI Listing |
Methods Mol Biol
December 2024
Chemical and Biological Engineering Department, School of Engineering and Applied Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
All-atom molecular dynamics (AAMD) is a computational technique that predicts the movement of particles based on the intermolecular forces acting on the system. It enables the study of biological systems at atomic detail, complements observations from experiments, and can help the selection of experimental targets. Here, we describe the applications of MD simulations to study the interaction between peripheral membrane proteins and lipid bilayers.
View Article and Find Full Text PDFBiophys Chem
December 2024
Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. Electronic address:
KIA peptides were designed as a series of cationic antimicrobial agents of different lengths, based on the repetitive motif [KIAGKIA]. As amphiphilic helices, they tend to bind initially to the surface of lipid membranes. Depending on the conditions, they are proposed to flip, insert and form toroidal pores, such that the peptides are aligned in a transmembrane orientation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Center of Protein Studies, Faculty of Biology, Havana University, Havana, Cuba.
Sticholysin I and II (St I/II) belong to the actinoporins family; these proteins form pores in host cell membranes by binding their N-terminal segment to the membrane, leading to protein-lipid (toroidal) pores. Peptides derived from actinoporins pore-forming domains replicate their folding properties and permeabilizing effects. Despite the advances in understanding how these proteins and peptides mediate pore formation, the role of different N-terminal segments in inducing membrane curvature is still unclear.
View Article and Find Full Text PDFSci Prog
December 2024
BIO5 Institution, College of Medicine, University of Arizona, Tucson, AZ, USA.
The amphipathic nature of helical proteins is crucial to their binding features across a broad spectrum of physiological examples, including heat-shock proteins and hyaluronic acid (HA) receptor binding. By taking advantage of the amphipathic balance of amino acids and their presentation in helical faces, novel synthetic peptides can be designed to improve biofunctionality. We present a new approach for designing synthetic alpha helical peptides using a multifaceted analysis, which allows for new bioengineering designs of amphipathic alpha helices.
View Article and Find Full Text PDFElife
November 2024
Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of Saarland, Homburg, Germany.
Complexin determines magnitude and kinetics of synchronized secretion, but the underlying molecular mechanisms remained unclear. Here, we show that the hydrophobic face of the amphipathic helix at the C-terminus of Complexin II (CpxII, amino acids 115-134) binds to fusion-promoting SNARE proteins, prevents premature secretion, and allows vesicles to accumulate in a release-ready state in mouse chromaffin cells. Specifically, we demonstrate that an unrelated amphipathic helix functionally substitutes for the C-terminal domain (CTD) of CpxII and that amino acid substitutions on the hydrophobic side compromise the arrest of the pre-fusion intermediate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!