Evidence from a variety of sources suggests that pericytes have contractile properties and may therefore function in the regulation of capillary blood flow. However, it has been suggested that contractility is not a ubiquitous function of pericytes, and that pericytes surrounding true capillaries apparently lack the machinery for contraction. The present study used a variety of techniques to investigate the expression of contractile proteins in the pericytes of the CNS. The results of immunocytochemistry on cryosections of brain and retina, retinal whole-mounts and immunoblotting of isolated brain capillaries indicate strong expression of the smooth muscle isoform of actin (alpha-SM actin) in a significant number of mid-capillary pericytes. Immunogold labelling at the ultrastructural level showed that alpha-SM actin expression in capillaries was exclusive to pericytes, and endothelial cells were negative. Compared to alpha-SM actin, non-muscle myosin was present in lower concentrations. By contrast, smooth muscle myosin isoforms, were absent. Pericytes were strongly positive for the intermediate filament protein vimentin, but lacked desmin which was consistently found in vascular smooth muscle cells. These results add support for a contractile role in pericytes of the CNS microvasculature, similar to that of vascular smooth muscle cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1011965307612 | DOI Listing |
Physiother Res Int
January 2025
Department of Biomedical Engineering, University of Engineering and Technology (UET) Lahore, Narowal Campus, Narowal, Pakistan.
Background And Purpose: Throwing a baseball involves intense exposure of the arm to high speeds and powerful forces, which contributes to an increasing prevalence of arm injuries among athletes. Traditional rigid exoskeletons and rehabilitation equipment frequently lack portability, safety, ergonomic design, and affordability. Traditional rehabilitation approaches frequently require therapist monitoring, resulting in therapy delays.
View Article and Find Full Text PDFFront Chem
December 2024
Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
Ethnopharmacological Relevance: In Moroccan traditional medicine, plants from the Apiaceae family are widely utilized in folk medicine to treat various diseases associated with the digestive system. plays an important role as an antispasmodic that has been traditionally used, especially to treat digestive tract diseases in children.
Aim Of The Study: The aim of this research was to verify the traditional use by assessing the relaxant and spasmolytic activities of essential oil (ALEO) and then comparing them to the effects and potency of the major constituent of ALEO, which is perillaldehyde.
One of the long-standing questions in cell signaling field to identify and characterize key signaling nodes out of a complex network. Phospholipase Cγ1 ( ) was identified as the most frequently mutated gene in adult T-cell leukemia/lymphoma, suggesting a critical function of PLCG1 in driving T cell activation. However, it remains unclear how these mutations regulate T cell physiology and pathology.
View Article and Find Full Text PDFBiochemistry
January 2025
George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmacological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States.
Cerebral vascular deposition of the amyloid-β (Aβ) peptide, a condition known as cerebral amyloid angiopathy (CAA), is associated with intracerebral hemorrhaging and contributes to disease progression in Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID). Familial mutations at positions 22 and 23 within the Aβ peptide lead to early onset and severe CAA pathology. Here, we evaluate the effects of fibrillar Aβ peptides on the viability of primary-cultured human cerebral smooth muscle (HCSM) cells, which are the major site of amyloid deposition in cerebral blood vessel walls.
View Article and Find Full Text PDFClin Genet
January 2025
Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Coxsackie and adenovirus receptor-like membrane protein (CLMP) mutation is identified as a genetic risk factor of congenital short bowel syndrome (CSBS). However, the specific pathogenic mechanism remains unclear. This study aimed to explore the clinical manifestations, genetic characteristics, and molecular mechanisms underlying CSBS caused by CLMP mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!