Enhanced salt intake in oxytocin deficient mice.

Exp Neurol

Department of Pharmacology and Toxicology, Wright State University School of Medicine, Dayton, Ohio 45401, USA.

Published: October 2001

The maternal roles of oxytocin (OT) are well known, but recent work suggests that OT is also a vital component in fluid balance regulation. To explore the role of OT in salt/volume regulation, we studied NaCl intake in a genetically modified mouse strain lacking OT. Using male control and OT knockout mice (OTKO), we determined the circadian pattern of salt and water intake under need-free conditions. For the study of intake, a two-bottle choice system was used to provide access to water and 2% NaCl with computerized monitoring of licking activity. Salt licking activity (licks/24 h) for controls was 59 +/- 22 vs. 380 +/- 105 in OTKO (P < 0.05). The volume of salt consumed (ml/24 h) was 0.4 +/- 0.1 in controls vs. 1.8 +/- 0.4 in OTKO (P < 0.01). There was no statistical difference in the consumption of water between the groups. However, the initiation of water intake was shifted, with an advancement of almost 3 h in OTKO (P < 0.01). Differences in the timing of salt intake could not be determined due to the low volume of salt consumed by controls. Taken together, these data show that removal of OT amplifies the salt-seeking behavior associated with normal daily fluid fluctuations. The fact that OTKO voluntarily consume a normally aversive salt solution further implies that OT is a powerful regulator of circadian salt appetite.

Download full-text PDF

Source
http://dx.doi.org/10.1006/exnr.2001.7776DOI Listing

Publication Analysis

Top Keywords

salt intake
8
water intake
8
licking activity
8
controls +/-
8
volume salt
8
salt consumed
8
otko 001
8
salt
7
intake
6
otko
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!