Although the primary stimulus regulating vasopressin (VP) release is a change in systemic osmolality, other physiological parameters are known to affect VP secretion or modulate the osmotic control over its release. Neuropeptides feature prominently in afferents underlying the central regulation of the VP-releasing magnocellular neurosecretory cells (MNCs). Although little is yet known of the circumstances under which peptides are released onto MNCs, previous studies have shown that a common response profile to exogenous peptide application is a slow excitation that seems to result from the activation of a nonselective cation conductance. In this paper we review the basis for the excitatory effects of angiotensin II, cholecystokinin, and neurotensin in MNCs acutely isolated from the supraoptic nucleus of adult rats. Saturating concentrations of these three peptides evoked nonadditive increases in macroscopic cation conductance. During single-channel recordings Ang II, CCK, and NT caused kinetically identical increases in the probability of opening of 35-pS nonselective cation channels. Patches containing only one channel further revealed that the activity of single channels could be regulated by separate applications of all three peptides. Peptide-stimulated channels were also found to be inactivated by increases in membrane stretch and to be blocked by low concentrations of gadolinium (Gd(3+)). It is concluded that many excitatory peptides depolarize MNCs by stimulating the stretch-inactivated cation channels underlying osmoreception. Convergent regulation of these channels provides a potentially powerful mechanism for integrating signals derived from the various afferents involved in the regulation of MNCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/exnr.2001.7780 | DOI Listing |
Front Physiol
January 2025
Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.
Two-pore channels (TPCs) are adenine nucleotide and phosphoinositide regulated cation channels. NAADP activates and ATP blocks TPCs, while the endolysosomal phosphoinositide PI(3,5)P activates TPCs. TPCs are ubiquitously expressed including expression in the innate as well as the adaptive immune system.
View Article and Find Full Text PDFEndocrinology
January 2025
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
Hypothalamic kisspeptin (Kiss1) neurons are vital for maintaining fertility in the mammal. In the female rodent, Kiss1 neurons populate the anteroventral periventricular/periventricular nuclei (Kiss1AVPV/PeN) and the arcuate nucleus (Kiss1ARH). Kiss1ARH neurons (a.
View Article and Find Full Text PDFTechnol Cancer Res Treat
January 2025
School of Basic Medical Sciences, Chengdu Medical College, 783 Xindu Avenue, Chengdu, 610500, Sichuan, China.
Long non-coding RNAs (lncRNAs) are known to play vital roles in human cancers. LncRNA TRPM2-AS has been found to be upregulated in various types of cancers. The elevated levels of TRPM2-AS are associated with important clinicopathological parameters such as tumor size, tumor stage, and lymph node metastasis, revealing that TRPM2-AS could be a potential target for cancer diagnosis, prognosis and treatment.
View Article and Find Full Text PDFJ Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFNutrients
January 2025
Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.
Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!