Hormones, cytokines, and related proteins (such as soluble hormone receptors) play an important role as therapeutic agents. Most hormone receptors signal through a mechanism that involves phosphorylation of the receptor's tyrosine residues. At any given moment, the receptor's phosphorylation state depends on the balance of kinase and phosphatase activities. Recent findings point to the exciting possibility that receptor signaling can be regulated by inhibition of protein tyrosine phosphatases (PTPs) that specifically hydrolyze receptor tyrosine-phosphates, or their immediate downstream effectors. This strategy has now been firmly validated for the insulin receptor and PTP1B; inhibiting PTP1B activity results in stimulation of the insulin receptor and signaling, even in the absence of insulin. This and similar findings suggest that PTP inhibitors have potential as hormone mimetics. In the present review, we outline this new paradigm for therapeutic regulation of the insulin receptor and discuss evidence that hints at other specific receptor-PTP pairs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/endo:15:1:019 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China.
Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province, China.
Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Türkiye.
Cell Mol Biol (Noisy-le-grand)
January 2025
Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:
The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!