The bone morphogenetic proteins (BMPs) regulate early embryogenesis and morphogenesis of multiple organs, such as bone, kidney, limbs, and muscle. Smad1 is one of the key signal transducers of BMPs and is responsible for transducing receptor activation signals from the cytoplasm to the nucleus, where Smad1 serves as a transcriptional regulator of various BMP-responsive genes. Based upon the ability of Smad1 to bind multiple proteins involved in proteasome-mediated degradation pathway, we investigated whether Smad1 could be a substrate for proteasome. We found that Smad1 is targeted to proteasome for degradation in response to BMP type I receptor activation. The targeting of Smad1 to proteasome involves not only the receptor activation-induced Smad1 ubiquitination but also the targeting functions of the ornithine decarboxylase antizyme and the proteasome beta subunit HsN3. Our studies provide the first evidence for BMP-induced proteasomal targeting and degradation of Smad1 and also reveal new players and novel mechanisms involved in this important aspect of Smad1 regulation and function.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M105500200DOI Listing

Publication Analysis

Top Keywords

smad1
10
degradation smad1
8
bone morphogenetic
8
morphogenetic proteins
8
receptor activation
8
proteasomal degradation
4
smad1 induced
4
induced bone
4
proteins bone
4
proteins bmps
4

Similar Publications

Background/purpose: Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.

View Article and Find Full Text PDF

Unveiling the signal valve specifically tuning the TGF-β1 suppression of osteogenesis: mediation through a SMAD1-SMAD2 complex.

Cell Commun Signal

January 2025

Department of Life Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112, Taiwan.

Background: TGF-β1 is the most abundant cytokine in bone, in which it serves as a vital factor to interdict adipogenesis and osteogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, how TGF-β1 concurrently manipulates differentiation into these two distinct lineages remains elusive.

Methods: Treatments with ligands or inhibitors followed by biochemical characterization, reporter assay, quantitative PCR and induced differentiation were applied to MSC line or primary BM-MSCs for signaling dissection.

View Article and Find Full Text PDF

Background/aims: Epithelial-to-mesenchymal transition (EMT) plays a crucial role in hepatic fibrogenesis and liver repair in chronic liver disease. Our research highlights the antifibrotic potential of placenta-derived mesenchymal stem cells (PD-MSCs) and the role of phosphatase of regenerating liver-1 (PRL-1) in promoting liver regeneration.

Methods: We evaluated the efficacy of PD-MSCs overexpressing PRL-1 (PD-MSCsPRL-1) in a bile duct ligation (BDL)-induced rat injury model, focusing on their ability to regulate EMT.

View Article and Find Full Text PDF

FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia.

Bone Res

January 2025

Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France.

Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2- and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch).

View Article and Find Full Text PDF

Introduction: -rearrangements define a subclass of acute leukemias characterized by a distinct gene expression signature linked to the dysfunctional oncogenic fusion proteins arising from various chromosomal translocations involving the (also known as ) gene. Research on the disease pathomechanism in -rearranged acute leukemias has mainly focused on the upregulation of the stemness-related genes of the -family and their co-factor .

Results: Here we report the and fusion gene-dependent downregulation of , a TGF-β signaling axis transcription factor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!