Mcm2, a member of the Mcm2-7 protein family essential for the initiation of DNA replication, has several biochemical activities including the ability to inhibit the Mcm4,6,7 helicase. In this study, we characterized the activities associated with Mcm2 and determined the region required for them. It was found that Mcm2 deleted at an amino-terminal portion is able to bind to an Mcm4,6,7 hexameric complex and to inhibit its DNA helicase activity. The same deletion mutant of Mcm2 and the carboxyl-terminal half of Mcm2 were both able to bind to Mcm4, suggesting that the carboxyl-half of Mcm2 binds to Mcm4 to disassemble the Mcm4,6,7 hexamer. Phosphorylation of Mcm2,4,6,7 complexes with Cdc7 kinase showed that the amino-terminal region of Mcm2 is required for the phosphorylation, and it contains major Cdc7-mediated phosphorylation sites. We also found that Mcm2 itself can assemble a nucleosome-like structure in vitro in the presence of H3/H4 histones. The amino-terminal region of Mcm2 was required for the activity where a histone-binding domain is located. Finally, we identified a region required for the nuclear localization of Mcm2. The function of Mcm2 is discussed based on these biochemical characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M106861200 | DOI Listing |
Nat Commun
January 2025
Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
The MCM motor of the eukaryotic replicative helicase is loaded as a double hexamer onto DNA by the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ATP binding supports formation of the ORC-Cdc6-Cdt1-MCM (OCCM) helicase-recruitment complex where ORC-Cdc6 and one MCM hexamer form two juxtaposed rings around duplex DNA. ATP hydrolysis by MCM completes MCM loading but the mechanism is unknown.
View Article and Find Full Text PDFBMC Urol
January 2025
Institute of Clinical Medicine, The Second affiliated Hospital of Hainan Medical University, 368th Yehai Avenue, Haikou, Hainan, 570311, China.
Background: Clear cell renal cell carcinoma (ccRCC) is the most common malignant urological tumor, and regrettably, and is insensitive to chemotherapy and radiotherapy, resulting in poor patient outcomes. DBF4 plays a critical role in DNA replication and participates in various biological functions, making it an attractive target for cancer treatment. However, its significance in ccRCC has not yet been explored.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
January 2025
Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
Vibrio anguillarum acts as an infectious agent in the aquaculture industry that causes a fatal hemolytic septicaemic disease in fish and shellfish. Viral nervous necrosis (VNN) disease seriously impacts the healthy development of the aquaculture industry. While the detrimental effects of V.
View Article and Find Full Text PDFBreast Cancer (Dove Med Press)
January 2025
The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.
Purpose: Cell division cycle protein 45 (CDC45) plays a crucial role in DNA replication. This study investigates its role in breast cancer (BC) and its impact on tumor progression.
Methods: We utilized the GEO database to screen differentially expressed genes (DEGs) and conducted enrichment analysis on these genes.
Sci Rep
January 2025
A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Epigenetic therapy has gained interest in treating cardiovascular diseases, but preclinical studies often encounter challenges with cell-type-specific effects or batch-to-batch variation, which have limited identification of novel drug candidates targeting angiogenesis. To address these limitations and improve the reproducibility of epigenetic drug screening, we redesigned a 3D in vitro fibrin bead assay to utilize immortalized human aortic endothelial cells (TeloHAECs) and screened a focused compound library with 105 agents. Compared to the established model using primary human umbilical vein endothelial cells, TeloHAECs needed a higher-density fibrin gel for optimal sprouting, successfully forming sprouts under both normoxic and hypoxic cell culture conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!