Growth phase and growth rate regulation of the rapA gene, encoding the RNA polymerase-associated protein RapA in Escherichia coli.

J Bacteriol

Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

Published: October 2001

The Escherichia coli rapA gene encodes the RNA polymerase (RNAP)-associated protein RapA, which is a bacterial member of the SWI/SNF helicase-like protein family. We have studied the rapA promoter and its regulation in vivo and determined the interaction between RNAP and the promoter in vitro. We have found that the expression of rapA is growth phase dependent, peaking at the early log phase. The growth phase control of rapA is determined at least by one particular feature of the promoter: it uses CTP as the transcription-initiating nucleotide instead of a purine, which is used for most E. coli promoters. We also found that the rapA promoter is subject to growth rate regulation in vivo and that it forms intrinsic unstable initiation complexes with RNAP in vitro. Furthermore, we have shown that a GC-rich or discriminator sequence between the -10 and +1 positions of the rapA promoter is responsible for its growth rate control and the instability of its initiation complexes with RNAP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC99692PMC
http://dx.doi.org/10.1128/JB.183.20.6126-6134.2001DOI Listing

Publication Analysis

Top Keywords

growth phase
12
growth rate
12
rapa promoter
12
rapa
9
phase growth
8
rate regulation
8
rapa gene
8
protein rapa
8
escherichia coli
8
regulation vivo
8

Similar Publications

Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO (TiO) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure-property relationships.

View Article and Find Full Text PDF

There is an urgent need to develop new targeted treatment agents for small cell lung cancer (SCLC). Tinengotinib (TT-00420) is a novel, multi-targeted, and spectrally selective small-molecule kinase inhibitor that has shown significant inhibitory effects on certain solid tumors in preclinical studies. However, its role and mechanism of action in SCLC remain unclear.

View Article and Find Full Text PDF

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

Lead Adsorption and Desorption at the Barite (001) Surface in the Presence of EDTA.

ACS ES T Water

January 2025

School of Earth and Environmental Sciences, Queens College, City University of New York, Queens, New York 11367, United States.

Scaling minerals, such as barite, can cause detrimental consequences for oil/gas pipelines and water systems, but their formation can be inhibited by organic chelators such as ethylenediaminetetraacetic acid (EDTA). Here, we resolve how EDTA affects sorption and desorption of Pb at the barite (001) surface using a combination of X-ray scattering and microscopy measurements. In the presence of EDTA, Pb incorporated in the topmost part of the barite surface and adsorbed as inner-sphere complexes on the surface.

View Article and Find Full Text PDF

While photochemical aging is known to alter secondary organic aerosol (SOA) properties, this process remains poorly constrained for anthropogenic SOA. This study investigates the photodegradation of SOA produced from the hydroxyl radical-initiated oxidation of naphthalene under low- and high-NO conditions. We used state-of-the-art mass spectrometry (MS) techniques, including extractive electrospray ionization and chemical ionization MS, for the in-depth molecular characterization of gas and particulate phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!