The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton's reagent.

J Hazard Mater

ELM consulting L.L.C., 304 S Clairborne, Suite 200, Olathe, KS 66062, USA.

Published: October 2001

Fenton's reagent is the result of reaction between hydrogen peroxide (H(2)O(2)) and ferrous iron (Fe(2+)), producing the hydroxyl radical (-*OH). The hydroxyl radical is a strong oxidant capable of oxidizing various organic compounds. The mechanism of oxidizing trichloroethylene (TCE) in groundwater and soil slurries with Fenton's reagent and the feasibility of injecting Fenton's reagent into a sandy aquifer were examined with bench-scale soil column and batch experiment studies. Under batch experimental conditions and low pH values ( approximately 3), Fenton's reagent was able to oxidize 93-100% (by weight) of dissolved TCE in groundwater and 98-102% (by weight) of TCE in soil slurries. Hydrogen peroxide decomposed rapidly in the test soil medium in both batch and column experiments. Due to competition between H(2)O(2) and TCE for hydroxyl radicals in the aqueous solutions and soil slurries, the presence of TCE significantly decreased the degradation rate of H(2)O(2) and was preferentially degraded by hydroxyl radicals. In the batch experiments, Fenton's reagent was able to completely dechlorinate the aqueous-phase TCE with and without the presence of soil and no VOC intermediates or by-products were found in the oxidation process. In the soil column experiments, it was found that application of high concentrations of H(2)O(2) with addition of no Fe(2+) generated large quantities of gas in a short period of time, sparging about 70% of the dissolved TCE into the gaseous phase with little or no detectable oxidation taking place. Fenton's reagent completely oxidized the dissolved phase TCE in the soil column experiment when TCE and Fenton's regent were simultaneously fed into the column. The results of this study showed that the feasibility of injecting Fenton's reagent or H(2)O(2) as a Fenton-type oxidant into the subsurface is highly dependent on the soil oxidant demand (SOD), presence of sufficient quantities of ferrous iron in the application area, and the proximity of the injection area to the zone of high aqueous concentration of the target contaminant. Also, it was found that in situ application of H(2)O(2) could have a gas-sparging effect on the dissolved VOC in groundwater, requiring careful attention to the remedial system design.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-3894(01)00263-1DOI Listing

Publication Analysis

Top Keywords

fenton's reagent
32
soil slurries
12
soil column
12
fenton's
9
tce
9
soil
9
reagent
8
hydrogen peroxide
8
ferrous iron
8
hydroxyl radical
8

Similar Publications

Photothermal therapy (PTT) using thermal and tumor microenvironment-responsive reagents is promising for cancer treatment. This study demonstrates an effective PTT nanodrug consisting of hollow-structured, thermally sensitive polydopamine nanobowls (HPDA NB), molybdenum sulfide (MoS) nanozyme, and tirapazamine (TPZ; a hypoxia-responsive drug), with a structure of HPDA@TPZ/MoS NBs which is hereafter denoted as HPTZMoS NBs. With the Fenton-like activity, the HPTZMoS NBs in the presence of HO catalyze the formation of hydroxyl radicals, providing chemodynamic therapy (CDT) effect and deactivating glutathione.

View Article and Find Full Text PDF

Molecular Mechanism for the Unprecedented Metal-Independent Hydroxyl Radical Production from Thioureas and HO.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.

The most well-known hydroxyl radical (OH)-generating system is the classic iron-mediated Fenton reaction. Thiourea has been considered as an efficient OH scavenger and is frequently used to study the role of OH in various biochemical and medical research studies. Here we found that the highly reactive OH can be produced from thiourea and HO through a metal-independent pathway, as measured by electron spin resonance (ESR) secondary radical spin-trapping and fluorescent methods.

View Article and Find Full Text PDF

Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.

View Article and Find Full Text PDF

Recent advances in electrochemical sensing and remediation technologies for ciprofloxacin.

Environ Sci Pollut Res Int

January 2025

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs.

View Article and Find Full Text PDF

Model-based scenario analysis to support the operation of solar photo-Fenton plants.

J Environ Manage

January 2025

Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, Almería, 04120, Spain; Chemical Engineering Department, University of Almería, Carretera de Sacramento s/n, Almería, 04120, Spain.

Model-based tools applied to wastewater management have been identified as an emerging solution to address the associated challenges related to the optimization of the technologies, meeting more restricted water quality standards. Thus, for the first time, the demonstration of the solar photo-Fenton process for microcontaminant removal in the operating environment of a model-based tool is reported. This tool aids in determining the right cost-effective seasonal strategy for a 37-m demonstration-scale photoreactor operating in a rural wastewater treatment plant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!