The plasma membrane Ca(2+)-ATPase in neuronal tissue plays an important role in fine tuning of the intracellular Ca(2+) concentration. The enzyme exhibits a high degree of tissue specificity and is regulated by several mechanisms. Here we analysed the relationship between separate modes of Ca(2+)-ATPase regulation, i.e., reversible phosphorylation processes mediated by protein kinases A and C, protein phosphatases PP1 and PP2A, and stimulation by calmodulin. The activity of PKA- or PKC-phosphorylated Ca(2+)-ATPase was influenced by the further addition of calmodulin, and this effect was more pronounced for PKC-phosphorylated calcium pump. In both cases the fluorescence study revealed the increased calmodulin binding, and for PKA-mediated phosphorylation it was correlated with a higher affinity of calcium pump for calmodulin. The incubation of Ca(2+)-ATPase with CaM prior to protein kinases action revealed that CaM presence counteracts the stimulatory effect of PKA and PKC. Under the in vitro assay cortical Ca(2+)-ATPase was a substrate for PP1 and PP2A. Protein phosphatases decreased both the basal activity of Ca(2+)-ATPase and its affinity for calmodulin. Fluorescence analysis confirmed the lowered ability of dephosphorylated Ca(2+)-ATPase for calmodulin binding. These results may suggest that interaction of CaM with calcium pump and its stimulatory action could be a partly separate phenomenon that is dependent on the phosphorylation state of Ca(2+)-ATPase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0167-4838(01)00244-8 | DOI Listing |
Cell Commun Signal
January 2025
Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China.
This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129.
Among new antimalarials discovered over the past decade are multiple chemical scaffolds that target P-type ATPase (ATP4). This essential protein is a Na pump responsible for the maintenance of Na homeostasis. ATP4 belongs to the type two-dimensional (2D) subfamily of P-type ATPases, for which no structures have been determined.
View Article and Find Full Text PDFBiomolecules
November 2024
Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
An ellagitannin-derived metabolite, Urolithin A (UA), has emerged as a potential therapeutic agent for metabolic disorders due to its antioxidant, anti-inflammatory, and mitochondrial function-improving properties, but its efficacy in protecting against ER stress remains underexplored. The endoplasmic reticulum (ER) is a cellular organelle involved in protein folding, lipid synthesis, and calcium regulation. Perturbations in these functions can lead to ER stress, which contributes to the development and progression of metabolic disorders such as metabolic-associated fatty liver disease (MAFLD).
View Article and Find Full Text PDFJ Photochem Photobiol B
January 2025
All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Moscow Region, Russia.
In recent decades, most studies of microbial rhodopsins have focused on their identification and characterization in aquatic bacteria. In 2021, actinomycetes of the family Geodermatophilaceae, commonly inhabiting terrestrial ecosystems in hot and arid regions, have been reported to contain rhodopsins with DTEW, DTEF and NDQ amino acid motifs. An advanced bioinformatics analysis performed in this work additionally revealed NTQ rhodopsin and heliorhodopsins.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France; Laboratory of Excellence for RBC, LABEX GR-Ex, 75015, Paris, France. Electronic address:
KCNN4, a Ca-activated K channel, is involved in various physiological and pathological processes. It is essential for epithelial transport, immune system and other physiological mechanisms but its activation is also involved in cancer pathophysiology as well as red blood cell disorders (RBC). The activation of KCNN4 in RBC leads to loss of KCl and water, a mechanism known as the "Gardos effect" described seventy years ago.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!