In an attempt to synthesize potential anticancer agents acting by inhibition of topoisomerase I (Topo I) a new series of oxyiminomethyl derivatives in position 7 of camptothecin (CPT) was prepared. The synthesis relied on the condensation of 20S-CPT-7-aldehyde or 20S-CPT-7-ketones with alkyl, aryl, heteroaryl, arylalkyl, and heteroarylalkyl O-substituted hydroxylamines. The compounds were tested for their cytotoxic activity in vitro against H460 non-small lung carcinoma cell line, the activity being for 24 out of 37 compounds in the 0.01-0.3 microM range. A QSAR analysis indicated that lipophilicity is the main parameter correlated with cytotoxicity. Investigation of the DNA-Topo I-drug cleavable complex showed a rough parallelism between cytotoxicity and inhibition of Topo I. Persistence of the DNA cleavage after NaCl-mediated disruption of the ternary complex suggests that for the most potent compounds, e.g., 15, the cytotoxicity was at least in part related to stabilization of the complex, as also supported by the persistence of the DNA-enzyme complex in drug-treated cells. The in vivo antitumor efficacy of the most potent analogue (15) was evaluated in direct comparison with topotecan using human lung tumor xenograft models. In the range of optimal doses (2-3 mg/kg), the improved efficacy of 15 was documented in terms of inhibition of tumor growth and rate of complete response.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm0108092DOI Listing

Publication Analysis

Top Keywords

vivo antitumor
8
novel 7-oxyiminomethyl
4
7-oxyiminomethyl derivatives
4
derivatives camptothecin
4
camptothecin potent
4
potent vitro
4
vitro vivo
4
antitumor activity
4
activity attempt
4
attempt synthesize
4

Similar Publications

Monotropein (Mon) is an iridoid glycosides extracted from Morinda officinalis F.C. How.

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

In this study, we synthesized 12 monofunctional tridentate ONS-donor salicylaldimine ligand ()-based Ru(II) complexes with general formula [(Ru()(-cymene)]·Cl (-), characterized by H NMR, C NMR, UV, FT-IR spectroscopy, HR-ESI mass spectrometry, and single-crystal X-ray analysis showing ligand's orientation around the Ru(II) center. All 12 of these 12 complexes were tested for their anticancer activities in multiple cancer cells. The superior antitumor efficacy of , , and was demonstrated by reduced mitochondrial membrane potential, impaired proliferative capacity, and disrupted redox homeostasis, along with enhanced apoptosis through caspase-3 activation and downregulation of Bcl-2 expression.

View Article and Find Full Text PDF

Purpose: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Oxaliplatin (OXA) is currently the primary chemotherapeutic agent for CRC, but its efficacy is limited by the tumor microenvironment (TME). Here, we present a combined approach of chemotherapy and TME modulation for CRC treatment.

View Article and Find Full Text PDF

Sodium valproate enhances efficacy of NKG2D CAR-T cells against glioblastoma.

Front Immunol

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!