The yeast Vps4 protein (Vps4p) is a member of the AAA protein family (ATPases associated with diverse cellular activities) and a key player in the transport of proteins out of a prevacuolar endosomal compartment. In human cells, we identified two non-allelic orthologous proteins (VPS4-A and VPS4-B) of yeast Vps4p. The human VPS4-A and VPS4-B proteins display a high degree of sequence identity to each other (80 %) and to the yeast Vps4 protein (59 and 60 %, respectively). Yeast cells lacking a functional VPS4 gene exhibit a temperature-sensitive growth defect and mislocalise a carboxypeptidase Y-invertase fusion protein to the cell surface. Heterologous expression of human VPS4 genes in vps4 mutant yeast strains led, in the case of human VPS4-A, to a partial and, in the case of human VPS4-B, to a complete suppression of the temperature-sensitive growth defect. The vacuolar protein sorting defect of vps4 mutant yeast cells was complemented completely by heterologous expressed human VPS4-B protein, and partially by the human VPS4-A protein. Expression of mutant human VPS4-A (E228Q) and VPS4-B (E235Q) proteins, harbouring single amino acid exchanges in their AAA domains, induced dominant-negative vacuolar protein sorting defects in wild-type yeast cells in both cases. Two-hybrid experiments suggest that the human VPS4-A and VPS4-B proteins can form heteromeric complexes, and subcellular localisation experiments indicate that both human VPS4 proteins associate with endosomal compartments in yeast. Based on these results, we conclude that both human VPS4 proteins are involved in intracellular protein trafficking, presumably at a late endosomal protein transport step, similar to the Vps4p in yeast.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.2001.4917 | DOI Listing |
mBio
March 2019
Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
Interferons (IFNs) and autophagy are critical neuronal defenses against viral infection. IFNs alter neuronal autophagy by promoting the accumulation of IFN-dependent LC3-decorated autophagic structures, termed LC3 clusters. Here, we analyzed LC3 clusters in sensory ganglia following herpes simplex virus 1 (HSV-1) infection.
View Article and Find Full Text PDFFEBS J
September 2016
Division of Cell Biology, Biocenter, Medical University of Innsbruck, Austria.
Complex molecular machineries bud, scission and repair cellular membranes. Components of the multi-subunit endosomal sorting complex required for transport (ESCRT) machinery are enlisted when multivesicular bodies are generated, extracellular vesicles are formed, the plasma membrane needs to be repaired, enveloped viruses bud out of host cells, defective nuclear pores have to be cleared, the nuclear envelope must be resealed after mitosis and for final midbody abscission during cytokinesis. While some ESCRT components are only required for specific processes, the assembly of ESCRT-III polymers on target membranes and the action of the AAA-ATPase Vps4 are mandatory for every process.
View Article and Find Full Text PDFBiophys J
November 2013
Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah; Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah.
HIV Gag polymerizes on the plasma membrane to form virus like particles (VLPs) that have similar diameters to wild-type viruses. We use multicolor, dual-penetration depth, total internal reflection fluorescence microscopy, which corrects for azimuthal movement, to image the assembly of individual VLPs from the time of nucleation to the recruitment of VPS4 (a component of the endosomal sorting complexes required for transport, and which marks the final stage of VLP assembly). Using a mathematical model for assembly and maximum-likelihood comparison of fits both with and without pauses, we detect pauses during Gag polymerization in 60% of VLPs.
View Article and Find Full Text PDFPLoS One
May 2012
Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
Many neurodegenerative diseases share a common pathological feature: the deposition of amyloid-like fibrils composed of misfolded proteins. Emerging evidence suggests that these proteins may spread from cell-to-cell and encourage the propagation of neurodegeneration in a prion-like manner. Here, we demonstrated that α-synuclein (αSYN), a principal culprit for Lewy pathology in Parkinson's disease (PD), was present in endosomal compartments and detectably secreted into the extracellular milieu.
View Article and Find Full Text PDFMicrobes Infect
January 2012
Division of Microbiology, Kobe University, Graduate School of Medicine, 7-5-1 Kusunoki-cho, Cyuo-ku, Kobe, Hyogo 650-0017, Japan.
The lack of a culture system that efficiently produces progeny virus has hampered hepatitis C virus (HCV) research. Recently, the discovery of a novel HCV isolate JFH1 and its chimeric derivative J6/JFH1 has led to the development of an efficient virus productive culture system. To construct an easy monitoring system for the viral life cycle of HCV, we generated bicistronic luciferase reporter virus genomes based on the JFH1 and J6/JFH1 isolates, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!