Partial cDNAs of different isoforms of protein phosphatase 2Cbeta (PP2Cbeta or PPM1B) have been characterized in mammals. We disclose here the full cDNAs of two major PP2Cbeta isoforms from human, rat and mouse. These cDNAs (2.6 and 3.3 kb) are able to encode 53 kDa (PP2Cbetal) and 43 kDa (PP2Cbetas) polypeptides, respectively. The isoforms are co-expressed ubiquitously with the highest level in skeletal muscle, as assessed by Northern-blot analysis. Western and in situ analyses using monoclonal antibodies against PP2Cbeta confirmed the existence of two isoforms in the cytoplasm. Comparative sequence analysis revealed that both cDNAs consist of six exons with an alternate usage of the 3' exons that underlies the differences between them. The genomic structure of PP2Cbeta is similar to that of other PP2C paralogs and includes a non-coding first exon followed by a large intron and a large second exon that encoded most of the catalytic domain. Both variants of the ending exon include large non-coding regions. All non-translated regions (NTRs) are highly conserved between the orthologous genes, indicating their regulatory function. The 5'-NTR is long (379 bp), includes upstream start codons and is predicted to contain stable secondary structures. Such features inhibit translation initiation by the scanning mechanism. Introduction of this NTR element into a bi-luciferase expression-cassette enabled expression of the second cistron, suggesting that it might serve as an internal ribosome entry site, or it contains a cryptic promoter. Overexpression of PP2Cbeta under CMV-promoter in 293 cells led to cell-growth arrest or cell death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.2001.4967 | DOI Listing |
PLoS One
January 2025
Facultad de Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain.
The budding yeast Xrn1 protein shuttles between the nucleus, where it stimulates transcription, and the cytoplasm, where it executes the major cytoplasmic mRNA decay. In the cytoplasm, apart from catalyzing 5'→3' decay onto non translated mRNAs, Xrn1 can follow the last translating ribosome to degrade the decapped mRNA template, a process known as "cotranslational mRNA decay". We have previously observed that the import of Xrn1 to the nucleus is required for efficient cytoplasmic mRNA decay.
View Article and Find Full Text PDFRev Med Chil
June 2024
Pontificia Universidad Católica de Chile, Santiago, Chile.
NAR Genom Bioinform
December 2024
Institute for Bioinformatics and Medical Informatics, Department of Computer Science, University of Tübingen, Sand 14, Tübingen 72076, Germany.
RNA-seq and its 5'-enrichment methods for prokaryotes have enabled the precise identification of transcription start sites (TSSs), improving gene expression analysis. Computational methods are applied to these data to identify TSSs and classify them based on proximal annotated genes. While some TSSs cannot be classified at all (orphan TSSs), other TSSs are found on the reverse strand of known genes (antisense TSSs) but are not associated with the direct transcription of any known gene.
View Article and Find Full Text PDFMol Ther Nucleic Acids
September 2024
Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
Mutations in nuclear genes regulating mitochondrial DNA (mtDNA) replication are associated with mtDNA depletion syndromes. Using whole-genome sequencing, we identified a heterozygous mutation (c.272G>A:p.
View Article and Find Full Text PDFVirology
March 2024
University of Hamburg, Institute of Plant Science and Microbiology, Molecular Phytopathology, Ohnhorststr. 18, 22609, Hamburg, Germany. Electronic address:
The Fusarium graminearum virus China 9 (FgV-ch9) is a member of the genus Betachrysovirus in the Chrysoviridae family and causes hypovirulence in its host, Fusarium graminearum, the causal agent of Fusarium head blight. Although insights into viral biology of FgV-ch9 have expanded in recent years, questions regarding the function of virus-encoded proteins, cis-acting elements, and virus transmission are yet to be answered. Therefore, we developed a tool for the establishment of an artificial 6th segment of FgV-ch9, which encodes a GFP gene flanked by the non-translated regions of FgV-ch9 segment 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!