We have demonstrated previously that the envelope proteins of a murine retrovirus (Moloney murine leukaemia virus) and a simian retrovirus (Mason-Pfizer monkey virus) have immunosuppressive properties in vivo. This property was manifested by the ability of the proteins, when expressed by tumour cells normally rejected by engrafted mice, to allow the envelope-expressing cells to escape immune rejection and to proliferate. Here, it is shown that this property is not restricted to the envelope of infectious retroviruses, but is also shared by the envelope protein encoded by an endogenous retrovirus of humans belonging to the HERV-H family. These results emphasize the close relationship between endogenous and infectious retroviruses and might be important in relation to the process of tumour progression in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/0022-1317-82-10-2515 | DOI Listing |
PLoS Genet
January 2025
Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy.
The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees.
View Article and Find Full Text PDFMicroorganisms
November 2024
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs), comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably high baseline expression in healthy thyroid tissues, indicating homeostatic roles. However, HERV regions are often overlooked in genome-wide association studies because of their highly repetitive nature, low sequence coverage, and decreased sequencing quality.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Nursing, Tokai University School of Medicine, Isehara 259-1193, Japan.
Retrotransposon Gag-like 4 (), a gene acquired from a retrovirus, is a causative gene in autism spectrum disorder. Its knockout mice exhibit increased impulsivity, impaired short-term spatial memory, failure to adapt to novel environments, and delayed noradrenaline (NA) recovery in the frontal cortex. However, due to its very low expression in the brain, it remains unknown which brain cells express RTL4 and its dynamics in relation to NA.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Krantz Family Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02114, USA.
The pluripotent stem cell (PSC)-derived human primordial germ cell-like cells (PGCLCs) are a cell culture-derived surrogate model of embryonic primordial germ cells. Upon differentiation of PSCs to PGCLCs, multiple loci of HML-2, the hominoid-specific human endogenous retrovirus (HERV), are strongly activated, which is necessary for PSC differentiation to PGCLCs. In PSCs, strongly activated loci of HERV-H family HERVs create chromatin contacts, which are required for the pluripotency.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia.
Human endogenous retroviruses (HERVs) are genomic fragments integrated into human DNA from germline infections by exogenous retroviruses that threatened primates early in their evolution and are inherited vertically in the germline. So far, HERVs have been studied in the context of extensive immunopathogenic, neuropathogenic and even oncogenic effects within their host. In particular, in our paper, we elaborate on the aspects related to the possible correlation of transposable HERV elements' activation and SARS-CoV-2 spike protein's presence in cells of COVID-19 patients or upon COVID-19 vaccination with implications for natural and adaptive immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!