The alphaherpesvirus UL34 protein is necessary for the primary envelopment of intranuclear capsids at the inner leaflet of the nuclear membrane. In herpes simplex virus type 1, the UL34 protein is exclusively phosphorylated by the protein kinase encoded by the non-essential US3 gene. To investigate the effect of the pseudorabies virus (PrV) US3 product on the intracellular localization of the UL34 protein and on virus morphogenesis, PrV US3 deletion mutants were isolated and characterized. Immunofluorescence analyses demonstrated that in the absence of the US3 protein, the localization of the UL34 polypeptide to the nuclear membrane was not as pronounced as that seen with US3, although immunoelectron microscopy indicated the presence of the UL34 protein in both leaflets of the nuclear membrane. Ultrastructurally, an accumulation of enveloped virions in the perinuclear space in large invaginations of the inner nuclear membrane was observed, which were shown by immunoelectron microscopy to contain the UL34 protein, but not glycoproteins gB or gC. Thus, the US3 protein appears to be involved in the de-envelopment of perinuclear virions by fusion with the outer leaflet of the nuclear membrane. Surprisingly, no difference in the phosphorylation of the PrV UL34 protein was observed in the presence or absence of the US3 kinase. Therefore, the observed effects of the PrV US3 protein on the intracellular localization of the UL34 protein and on virus morphogenesis are probably not due to the phosphorylation of the UL34 protein by the US3 kinase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/0022-1317-82-10-2363 | DOI Listing |
J Med Virol
March 2024
Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain.
Cytomegalovirus (CMV) DNA in plasma is mainly unprotected and highly fragmented. The size of the amplicon largely explains the variation in CMV DNA loads quantified across PCR platforms. In this proof-of-concept study, we assessed whether the CMV DNA fragmentation profile may vary across allogeneic hematopoietic stem cell transplant recipients (allo-SCT), within the same patient over time, or is affected by letermovir (LMV) use.
View Article and Find Full Text PDFPLoS Pathog
January 2024
Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America.
Nuclear egress is an essential process in herpesvirus replication whereby nascent capsids translocate from the nucleus to the cytoplasm. This initial step of nuclear egress-budding at the inner nuclear membrane-is coordinated by the nuclear egress complex (NEC). Composed of the viral proteins UL31 and UL34, NEC deforms the membrane around the capsid as the latter buds into the perinuclear space.
View Article and Find Full Text PDFJ Virol
October 2023
Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
Herpesviruses are able to disseminate in infected hosts despite development of a strong immune response. Their ability to do this relies on a specialized process called cell-to-cell spread in which newly assembled virus particles are trafficked to plasma membrane surfaces that abut adjacent uninfected cells. The mechanism of cell-to-cell spread is obscure, and little is known about whether or how it is regulated in different cells.
View Article and Find Full Text PDFJ Med Virol
March 2023
College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China.
Proteins UL31 and UL34 encoded by alphaherpesvirus are critical for viral primary envelopment and nuclear egress. We report here that pseudorabies virus (PRV), a useful model for research on herpesvirus pathogenesis, uses N-myc downstream regulated 1 (NDRG1) to assist the nuclear import of UL31 and UL34. PRV promoted NDRG1 expression through DNA damage-induced P53 activation, which was beneficial to viral proliferation.
View Article and Find Full Text PDFPoult Sci
March 2023
Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China.
Duck plague virus (DPV) is a pathogen causing duck plague and has caused huge economic losses in poultry industry. In our previous report, US3 gene deletion from DPV genome seriously impaired virus replication. In this study, we constructed a US3 kinase-inactive mutant (US3K213A) to further explore the function of US3 protein (pUS3) in DPV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!