Identification of glycosaminoglycans (GAGs) synthesized by three human leukaemic cell lines-Jurkat (T-cell leukaemia), Daudi (Burkitt's lymphoma, B-cell leukaemia) and THP-1 (acute monocytic leukemia)-and normal peripheral blood mononuclear cells (PBMC) and their distribution among cell membrane and culture medium were studied. GAGs were isolated using ion-exchange chromatography on DEAE-Sephacel and their composition and fine chemical structure were studied using high-performance liquid chromatography with radiochemical detection. All cell lines synthesize chondroitin sulphate (CS) and heparan sulphate (HS) in both cell membrane and culture medium. No hyaluronan was detected using treatment with specific lyases and highly sensitive HPLC methodology. CS is the major secreted GAG in all cell lines tested and the major cell retained GAG in Jurkat and Daudi. HS is the major GAG in the cell membrane of THP-1. The amounts of distinct GAGs synthesized by all cancer cell lines differ from those produced by normal PBML indicating a major role of GAGs in malignant transformation of human lymphocytes and monocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bmc.91DOI Listing

Publication Analysis

Top Keywords

cell membrane
12
cell lines
12
high-performance liquid
8
liquid chromatography
8
gags synthesized
8
cell
8
membrane culture
8
culture medium
8
gag cell
8
synthesis distribution
4

Similar Publications

Regarding flotillin knockdown, drug resistance is reversed in colorectal cancer (CRC) cell lines; this is associated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, as our previous experimental results indicated. However, the exact mechanism underlying this pathway remains unclear. PI3K inhibitor and activator were added separately to clarify the role of the PI3K pathway in reversing drug resistance.

View Article and Find Full Text PDF

Background: Metastatic castration-resistant prostate cancer (mCRPC) has a poor prognosis, necessitating the investigation of novel treatments and targets. This study evaluated JNJ-70218902 (JNJ-902), a T-cell redirector targeting transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains 2 (TMEFF2) and cluster of differentiation 3, in mCRPC.

Patients And Methods: Patients who had measurable/evaluable mCRPC after at least one novel androgen receptor-targeted therapy or chemotherapy were eligible.

View Article and Find Full Text PDF

Synthesis and evaluation of the antifungal and antibiofilm potential of aminochalcones.

Arch Microbiol

January 2025

Department of Chemistryand Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University Júlio de Mesquita Filho, São José do Rio Preto, SP, Brazil.

Candida is a commensal fungus of clinical interest that commonly lives in oral cavity and intestine but can become an opportunist microrganism and cause severe infections. A serie of 10 aminochalcones were designed and synthetized to obtain compounds anti-Candida with potent and broad-spectrum activity. The most active compound J34 demonstrated excellent in vitro activity against Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrata and Candida krusei with minimum inhibitory concentration between 1.

View Article and Find Full Text PDF

Neuropathic pain, caused by nerve damage, greatly affects quality of life. Recent research proposes modulating brain activity, particularly through electrical stimulation of the insular cortex (IC), as a treatment option. This study aimed to understand how IC stimulation (ICS) affects pain modulation.

View Article and Find Full Text PDF

Intracellular delivery of proteins is an important barrier in the development of strategies to deliver functional proteins and protein therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable and enhance the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. Small molecules conjugations such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!