The modification of indices of the humoral immune response to thymus-dependent antigen (sheep erythrocytes) after a whole-body exposure of healthy mice to low-intensity extremely-high-frequency electromagnetic radiation was studied. Male NMRI mice were exposed in the far-field zone of horn antenna at a frequency of 42.0 GHz and energy flux density of 0.15 mW/cm2 under different regimes: once for 20 min, for 20 min daily during 5 and 20 successive days before immunization, and for 20 min daily during 5 successive days after immunization throughout the development of the humoral immune response. The intensity of the humoral immune response was estimated on day 5 after immunization by the number of antibody-forming cells of the spleen and antibody titers. Changes in cellularity of the spleen, thymus and red bone marrow were also assessed. The indices of humoral immunity and cellularity of lymphoid organs changed insignificantly after acute exposure and series of 5 exposures before and after immunization of the animals. However, after repeated exposures for 20 days before immunization, a statistically significant reduction of thymic cellularity by 17.5% (p < 0.05) and a decrease in cellularity of the spleen by 14.5% (p < 0.05) were revealed. The results show that low-intensity extremely-high-frequency electromagnetic radiation with the frequency and energy flux density used does not influence the humoral immune response intensity in healthy mice but influences immunogenesis under multiple repeated exposures.
Download full-text PDF |
Source |
---|
J Cell Mol Med
January 2025
Institute of Molecular Medicine, Huaqiao University, Quanzhou, China.
Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China. Electronic address:
Binding and neutralizing antibodies are critical indicators of protection against viral pathogens and are essential for assessing the immunogenicity and efficacy of a vaccine. Here, we present a protocol comprising two assays for measuring the spike-specific binding and neutralizing antibodies in mouse plasma following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. We describe steps for determining binding antibody titers using enzyme-linked immunosorbent assay (ELISA) and assessing neutralizing antibody titers through a pseudovirus neutralization assay.
View Article and Find Full Text PDFCureus
December 2024
Laboratory of Genomic Medicine, GHC GENETICS SK, Comenius University Science Park, Bratislava, SVK.
X-linked severe combined immunodeficiency disease (X-SCID) is a form of inborn errors of immunity (IEI) associated with causal DNA variants of the gene. Patients with X-SCID are characterized by a combination of cellular and humoral immunodeficiencies associated with increased susceptibility to infections. The presented cases constituted two unrelated male patients from the Slovak population.
View Article and Find Full Text PDFJ Med Virol
January 2025
Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia.
MERS is a respiratory disease caused by MERS-CoV. Multiple outbreaks have been reported, and the virus co-circulates with SARS-CoV-2. The long-term (> 6 years) cellular and humoral immune responses to MERS-CoV and their potential cross-reactivity to SARS-CoV-2 and its variants are unknown.
View Article and Find Full Text PDFMuscle Nerve
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
Introduction/aims: Tofacitinib, a first-generation Janus kinase (JAK) 1/3 inhibitor, is commonly used for treating ulcerative colitis and rheumatoid arthritis. However, its role in myasthenia gravis (MG) remains unclear. This study aimed to evaluate the immunomodulatory effects of tofacitinib on experimental autoimmune myasthenia gravis (EAMG) and peripheral blood mononuclear cells (PBMCs) from patients with MG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!