Observation of the Kapitza-Dirac effect.

Nature

Department of Physics and Astronomy, University of Nebraska-Lincoln, 116 Brace Laboratory, PO Box 880111, Lincoln, Nebraska 68588-0111, USA.

Published: September 2001

In their famous 1927 experiment, Davisson and Germer observed the diffraction of electrons by a periodic material structure, so showing that electrons can behave like waves. Shortly afterwards, Kapitza and Dirac predicted that electrons should also be diffracted by a standing light wave. This Kapitza-Dirac effect is analogous to the diffraction of light by a grating, but with the roles of the wave and matter reversed. The electron and the light grating interact extremely weakly, via the 'ponderomotive potential', so attempts to measure the Kapitza-Dirac effect had to wait for the development of the laser. The idea that the underlying interaction with light is resonantly enhanced for electrons in an atom led to the observation that atoms could be diffracted by a standing wave of light. Deflection of electrons by high-intensity laser light, which is also a consequence of the Kapitza-Dirac effect, has also been demonstrated. But the coherent interference that characterizes wave diffraction has not hitherto been observed. Here we report the diffraction of free electrons from a standing light wave-a realization of the Kapitza-Dirac effect as originally proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1038/35093065DOI Listing

Publication Analysis

Top Keywords

diffracted standing
8
standing light
8
light grating
8
light
7
electrons
6
observation kapitza-dirac
4
kapitza-dirac famous
4
famous 1927
4
1927 experiment
4
experiment davisson
4

Similar Publications

The development of molecular species with switchable magnetic properties has been a long-standing challenge in chemistry. One approach involves binding an analyte, such as protons, to a compound to trigger a change in magnetism. Transition metal complexes have been targeted for this type of magnetic modulation because they can undergo changes in their spin states.

View Article and Find Full Text PDF

Metalloporphyrins on interfaces offer a rich playground for functional materials and hence have been subjected to intense scrutiny over the past decades. As the same porphyrin macrocycle on the same surface may exhibit vastly different physicochemical properties depending on the metal center and its substituents, it is vital to have a thorough structural and chemical characterization of such systems. Here, we explore the distinctions arising from coverage and macrocycle substituents on the closely related ruthenium octaethyl porphyrin and ruthenium tetrabenzo porphyrin on Ag(111).

View Article and Find Full Text PDF

All-solid-state (ASS) batteries are a promising solution to achieve carbon neutrality. ASS lithium-sulfur (Li-S) batteries stand out due to their improved safety, achieved by replacing organic solvents, which are prone to leakage and fire, with solid electrolytes. In addition, these batteries offer the benefits of higher capacity and the absence of rare metals.

View Article and Find Full Text PDF

A semi-automated workflow relying on atomic-scale modelling is introduced to explore and understand the yet-unsolved structure of the crystalline AsTe material, recently obtained from crystallization of the parent AsTe glass, which shows promising properties for thermoelectric applications. The seemingly complex crystal structure of AsTe is investigated with density functional theory, from the stand point of As/Te disorder, in a structural template derived from elemental-Te (Te), following experimental findings from combined X-ray total scattering and diffraction. Our workflow includes a combinatorial structure generation step followed by successive structure selection and relaxation steps with progressively-increasing accuracy levels and a multi-criterion evaluation procedure.

View Article and Find Full Text PDF

All-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates LiPSX (X=Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!