Comparative genomic hybridization (CGH), fluorescence in situ hybridization (FISH), polymerase chain reaction-based microsatellite analysis, and p53 sequencing were performed in paraffin-embedded material from 18 oligodendrogliomas and histologically similar astrocytomas. The study was undertaken because of evidence that concurrent loss of both the 1p and 19q chromosome arms is a specific marker for oligodendrogliomas. Of the six lesions with a review diagnosis of oligodendroglioma, all had the predicted loss of 1p and 19q seen by CGH, FISH, and polymerase chain reaction. Other lesions, including some considered oligodendroglioma or mixed glioma by the submitting institution, did not. There were no p53 mutations in any of the six oligodendrogliomas, whereas 5 of the 10 remaining, successfully studied cases did have p53 mutations. The results suggest that CGH and FISH performed on current or archival tissue can aid in classification of infiltrating gliomas such as oligodendrogliomas and astrocytomas. The results of the p53 studies are consistent with findings of previous investigations that such mutations are less common in oligodendrogliomas than they are in astrocytomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/modpathol.3880400 | DOI Listing |
Biomedicines
November 2024
Cancer Epidemiology and Cancer Services Research, Centre for Cancer, Society & Public Health, Bermondsey Wing, King's College London, 3rd Floor, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
Molecular profiles can predict which patients will respond to current standard treatment and new targeted therapy regimens. Using data from a highly diverse population of approximately three million in Southeast London and Kent, this study aims to evaluate the prevalence of IDH1 mutation and MGMT promoter methylation in the gliomas diagnosed in adult patients and to explore correlations with patients' demographic and clinicopathological characteristics. Anonymised data on 749 adult patients diagnosed with a glioma in 2015-2019 at King's College Hospital were extracted.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy.
Background: Brain calcifications, found in various conditions, may be incidental or crucial for diagnosis. They occur in physiological changes, infections, genetic diseases, neurodegenerative conditions, vascular syndromes, metabolic disorders, endocrine disorders, and primary tumors like oligodendroglioma. While often incidental, their presence can be vital for accurate diagnosis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Avenue, Chengdu, 610041, People's Republic of China.
Multiple artificial intelligence systems have been created to facilitate accurate and prompt histopathological diagnosis of tumors using hematoxylin-eosin-stained slides. We aimed to investigate whether weakly supervised deep learning can aid in glioma diagnosis. We analyzed 472 whole slide images (WSIs) from 226 patients in West China Hospital (WCH) and 1604 WSIs from 880 patients in The Cancer Genome Atlas (TCGA).
View Article and Find Full Text PDFMagn Reson Imaging
December 2024
Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland.
Background: Brain tumors exhibit diverse genetic landscapes and hemodynamic properties, influencing diagnosis and treatment outcomes.
Purpose: To explore the relationship between MRI perfusion metrics (rCBV, rCBF), genetic markers, and contrast enhancement patterns in gliomas, aiming to enhance diagnostic accuracy and inform personalized therapeutic strategies. Additionally, other radiological features, such as the T2/FLAIR mismatch sign, are evaluated for their predictive utility in IDH mutations.
Lancet Oncol
January 2025
Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada. Electronic address:
Background: Gliomas are a major cause of cancer-related death among children, adolescents, and young adults (age 0-40 years). Primary mismatch repair deficiency (MMRD) is a pan-cancer mechanism with unique biology and therapeutic opportunities. We aimed to determine the extent and impact of primary MMRD in gliomas among children, adolescents, and young adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!