The fibroblast growth factor receptor (FGFR)-2 gene contains two mutually exclusive exons, K-SAM and BEK. We made a cell line designed to become drug-resistant on repression of BEK exon splicing. One drug-resistant derivative of this line carried an insertion within the BEK exon of a sequence containing at least two independent splicing silencers. One silencer was a pyrimidine-rich sequence, which markedly increased binding of polypyrimidine tract-binding protein to the BEK exon. The BEK exon binds to polypyrimidine tract-binding protein even in the silencer's absence. Several exonic pyrimidine runs are required for this binding, and they are also required for overexpression of polypyrimidine tract-binding protein to repress BEK exon splicing. These results show that binding of polypyrimidine tract-binding protein to exon sequences can repress splicing. In epithelial cells, the K-SAM exon is spliced in preference to the BEK exon, whose splicing is repressed. Mutation of the BEK exon pyrimidine runs decreases this repression. If this mutation is combined with the deletion of a sequence in the intron upstream from the BEK exon, a complete switch from K-SAM to BEK exon splicing ensues. Binding of polypyrimidine tract binding protein to the BEK exon thus participates in the K-SAM/BEK alternative splicing choice.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M107381200DOI Listing

Publication Analysis

Top Keywords

bek exon
40
polypyrimidine tract-binding
20
tract-binding protein
20
exon splicing
16
exon
14
binding polypyrimidine
12
bek
11
splicing
8
fibroblast growth
8
growth factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!