Superoxide has been implicated in the cellular signalling pathways, which regulate growth of mesangial cells (MC) and vascular smooth muscle cells. Manganese (Mn)(2+)-dependent superoxide dismutase (SOD-2) is primarily responsible for metabolism of superoxide produced in mitochondria by respiratory chain activity during aerobic metabolism of glucose and other substrates. In the current studies, we examined the role of superoxide in the stimulation of collagen accumulation induced in MC by culture in media containing a high concentration of glucose. Aconitase, an iron sulfur enzyme whose activity is inhibited by superoxide, was used as an index of cellular superoxide production and action. SV-40-transformed mouse MC were cultured in media containing 100 (low) or 500 (high) mg/dL D-glucose and infected with a recombinant adenoviral (Ad) vector encoding either human mitochondrial Mn(2+) SOD-2 or green fluorescent protein (GFP). In cells infected with SOD-2 (SOD-2-Ad) and cultured in low glucose, SOD-2 activity was 5-fold higher than in cells infected with GFP (GFP-Ad), whereas Cu(2+)/Zn(2+) cytoplasmic SOD (SOD-1) did not differ; culture in high-glucose media did not alter SOD-2 or SOD-1 activity in either GFD-Ad or SOD-2-Ad. In GFP-Ad, high glucose suppressed aconitase activity and increased collagen accumulation compared with corresponding values in low glucose. In SOD-2-Ad, high glucose failed to suppress aconitase activity or increase collagen accumulation. Addition of exogenous (presumably extracellular) SOD to GFP-Ad had no effect on the stimulation of collagen accumulation by high glucose. Analogous to the effects of SOD-2-Ad, diphenylene iodonium (DPI), a nonspecific inhibitor of the production of superoxide by mitochondrial respiration and other nicotinamide adenine dinucleotide (phosphate) (NAD)(P)H oxidase activities, reduced collagen accumulation in GFP-Ad cultured in low glucose and blocked stimulation of collagen accumulation induced by culture in high glucose. These results support a role for increased cellular superoxide production derived from NAD(P)H oxidase activity in the stimulation of collagen accumulation induced in MC by high glucose and demonstrate that an increase in mitochondrial SOD-2 activity suppresses this response.

Download full-text PDF

Source
http://dx.doi.org/10.1053/meta.2001.25802DOI Listing

Publication Analysis

Top Keywords

collagen accumulation
32
high glucose
20
accumulation induced
16
stimulation collagen
16
induced culture
12
low glucose
12
glucose
11
superoxide
9
superoxide dismutase
8
collagen
8

Similar Publications

Background: Skin melanoma is a highly metastatic cancer with an increasing global incidence. Despite advancements in immunotherapy, new treatment strategies based on tumor biology are essential for improving outcomes and developing novel therapies. Autophagy plays a critical role in melanoma cell metabolism and affects the tumor microenvironment (TME).

View Article and Find Full Text PDF

Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.

View Article and Find Full Text PDF

The present study explored the possible antiobesogenic and osteoprotective properties of the gut metabolite ginsenoside CK to clarify its influence on lipid and atherosclerosis pathways, thereby validating previously published hypotheses. These hypotheses were validated by harvesting and cultivating 3T3-L1 and MC3T3-E1 in adipogenic and osteogenic media with varying concentrations of CK. We assessed the differentiation of adipocytes and osteoblasts in these cell lines by applying the most effective doses of CK that we initially selected.

View Article and Find Full Text PDF

Collagen I is the most abundant type of intramuscular collagen. Lysyl oxidase promotes collagen cross-link formation, which helps stabilize the extracellular matrix. Furthermore, matrix metalloproteinases, responsible for collagen degradation, maintain typical muscle structure and function through remodeling.

View Article and Find Full Text PDF

Acquired reactive perforating dermatosis (ARPD) is characterized by its onset after the age of 18 years, umbilicated papules or nodules with a central keratotic plug, and the presence of necrotic collagen tissue within an epithelial crater. ARPD is strongly associated with systemic diseases such as diabetes mellitus (DM) and chronic renal failure, which may contribute to ARPD through factors including microcirculatory disturbances and the deposition of metabolic byproducts, including advanced glycation end-products and calcium. Here, we report a case of ARPD that improved following DM treatment and catheter-based interventions for peripheral artery disease (PAD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!