Inhibition of tumor-induced neovascularization appears to be an effective anticancer approach, although long-term angiogenesis inhibition may be required. An alternative to chronic drug administration is a gene therapy-mediated approach in which long-term in vivo protein expression is established. We have tested this approach by modifying murine bone marrow-derived cells with a gene encoding an angiogenesis inhibitor: a soluble, truncated form of the vascular endothelial growth factor receptor-2, fetal liver kinase-1 (Flk-1). Murine bone marrow cells were transduced with a retroviral vector encoding either truncated, soluble Flk-1 (tsFlk-1) together with green fluorescent protein (GFP) or GFP alone. Tumor growth in mice challenged 3 months after transplantation with tsFlk-1-expressing bone marrow cells was significantly inhibited when compared with tumor growth in control-transplanted mice. Immunohistochemical analysis of tumors in each group demonstrated colocalization of GFP expression in cells staining with endothelial cell markers, suggesting that the endothelial cells of the tumor-induced neovasculature were derived, at least in part, from bone marrow precursors. These results suggest that long-term expression of a functional angiogenesis inhibitor can be generated through gene-modified, bone marrow-derived stem cells, and that this approach can have significant anticancer efficacy. Modifying these cells seems to have the added potential benefit of targeting transgene expression to the tumor neovasculature, because bone marrow-derived endothelial cell precursors seem to be recruited in the process of tumor-induced angiogenesis.
Download full-text PDF |
Source |
---|
Front Immunol
January 2025
Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
Introduction: The severity of spinal cord injury (SCI) is closely tied to pulmonary function, especially in cases of higher SCI levels. Despite this connection, the underlying pathological mechanisms in the lungs post-SCI are not well understood. Previous research has established a connection between disrupted sympathetic regulation and splenocyte apoptosis in high thoracic SCI, leading to pulmonary dysfunction.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China.
Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
Background: Arginase-1 (Arg1) expressing tumor-associated macrophages (TAMs) may create an immune-suppressive tumor microenvironment (TME), which is a significant challenge for cancer immunotherapy. We previously reported the existence of Arg1-specific memory T cells among peripheral blood mononuclear cells (PBMCs) and described that Arg-1-based immune modulatory vaccines (IMVs) control tumor growth and alter the M1/M2 macrophage ratio in murine models of cancer. In the present study, we investigated how Arg1-specific T cells can directly target TAMs and influence their polarization.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.
View Article and Find Full Text PDFJ Orthop Translat
January 2025
Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
Background: RANKL and SCLEROSTIN antibodies have provided a strong effective choice for treating osteoporosis in the past years, which suggested novel molecular target identification and therapeutic strategies development are important for the treatment of osteoporosis. The therapeutic effect of verapamil, a drug previously used for cardiovascular diseases, on diabetes was due to the inhibition of TXNIP expression, which has also been reported as a target in mice osteoporosis. Whether verapamil-inhibited TXNIP expression is related to osteoporosis and how it works on the molecular level is worthy to be explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!